|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- imagefolder |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: vit-artworkclassifier |
|
results: |
|
- task: |
|
name: Image Classification |
|
type: image-classification |
|
dataset: |
|
name: imagefolder |
|
type: imagefolder |
|
config: artbench10-vit |
|
split: test |
|
args: artbench10-vit |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.5947786606129398 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# vit-artworkclassifier |
|
This model returns the artwork style of any image input. |
|
|
|
|
|
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. This is a subset of the artbench-10 dataset (https://www.kaggle.com/datasets/alexanderliao/artbench10), with a train set of 1000 artworks per class and a test set of 100 artworks per class. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.1392 |
|
- Accuracy: 0.5948 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 4 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:| |
|
| 1.5906 | 0.36 | 100 | 1.4709 | 0.4847 | |
|
| 1.3395 | 0.72 | 200 | 1.3208 | 0.5074 | |
|
| 1.1461 | 1.08 | 300 | 1.3363 | 0.5165 | |
|
| 0.9593 | 1.44 | 400 | 1.1790 | 0.5846 | |
|
| 0.8761 | 1.8 | 500 | 1.1252 | 0.5902 | |
|
| 0.5922 | 2.16 | 600 | 1.1392 | 0.5948 | |
|
| 0.4803 | 2.52 | 700 | 1.1560 | 0.5936 | |
|
| 0.4454 | 2.88 | 800 | 1.1545 | 0.6118 | |
|
| 0.2271 | 3.24 | 900 | 1.2284 | 0.6039 | |
|
| 0.207 | 3.6 | 1000 | 1.2625 | 0.5959 | |
|
| 0.1958 | 3.96 | 1100 | 1.2621 | 0.6005 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.26.1 |
|
- Pytorch 1.13.1+cu117 |
|
- Datasets 2.9.0 |
|
- Tokenizers 0.13.2 |
|
|
|
### Code to Run |
|
def vit_classify(image): |
|
vit = ViTForImageClassification.from_pretrained("oschamp/vit-artworkclassifier") |
|
vit.eval() |
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
vit.to(device) |
|
|
|
model_name_or_path = 'google/vit-base-patch16-224-in21k' |
|
feature_extractor = ViTFeatureExtractor.from_pretrained(model_name_or_path) |
|
|
|
#LOAD IMAGE |
|
|
|
encoding = feature_extractor(images=image, return_tensors="pt") |
|
encoding.keys() |
|
|
|
pixel_values = encoding['pixel_values'].to(device) |
|
|
|
outputs = vit(pixel_values) |
|
logits = outputs.logits |
|
|
|
prediction = logits.argmax(-1) |
|
return prediction.item() #vit.config.id2label[prediction.item()] |
|
|