osiria's picture
Update README.md
598fc75
|
raw
history blame
5.07 kB
metadata
license: apache-2.0
language:
  - it
datasets:
  - squad_it
widget:
  - text: quale libro fu scritto da alessandro manzoni?
    context: alessandro manzoni pubblicò la prima versione de i promessi sposi nel 1827
  - text: in quali competizioni gareggia la ferrari?
    context: >-
      la scuderia ferrari è una squadra corse italiana di formula 1 con sede a
      maranello
  - text: quale sport è riferito alla serie a?
    context: >-
      il campionato di serie a è la massima divisione professionistica del
      campionato italiano di calcio maschile
model-index:
  - name: osiria/bert-italian-cased-question-answering
    results:
      - task:
          type: question-answering
          name: Question Answering
        dataset:
          name: squad_it
          type: squad_it
        metrics:
          - type: exact-match
            value: 0.656
            name: Exact Match
          - type: f1
            value: 0.7716
            name: F1
pipeline_tag: question-answering


    Task: Question Answering
    Model: BERT
    Lang: IT
  Type: Uncased

Model description

This is a BERT [1] uncased model for the Italian language, fine-tuned for Extractive Question Answering on the SQuAD-IT dataset [2]

If you are looking for a more accurate (but slightly heavier) model, you can refer to: https://huggingface.co/osiria/deberta-italian-question-answering

update: version 2.0

The 2.0 version further improves the performances by exploiting a 2-phases fine-tuning strategy: the model is first fine-tuned on the English SQuAD v2 (1 epoch, 20% warmup ratio, and max learning rate of 3e-5) then further fine-tuned on the Italian SQuAD (2 epochs, no warmup, initial learning rate of 3e-5)

In order to maximize the benefits of the multilingual procedure, bert-base-multilingual-uncased is used as a pre-trained model. When the double fine-tuning is completed, the embedding layer is then compressed as in bert-base-italian-uncased to obtain a mono-lingual model size

Training and Performances

The model is trained to perform question answering, given a context and a question (under the assumption that the context contains the answer to the question). It has been fine-tuned for Extractive Question Answering, using the SQuAD-IT dataset, for 2 epochs with a linearly decaying learning rate starting from 3e-5, maximum sequence length of 384 and document stride of 128.
The dataset includes 54.159 training instances and 7.609 test instances

The performances on the test set are reported in the following table:

EM F1
65.60 77.16

Testing notebook: https://huggingface.co/osiria/bert-italian-uncased-question-answering/blob/main/osiria_bert_italian_uncased_qa_evaluation.ipynb

Quick usage

from transformers import BertTokenizerFast, BertForQuestionAnswering
from transformers import pipeline

tokenizer = BertTokenizerFast.from_pretrained("osiria/bert-italian-uncased-question-answering")
model = BertForQuestionAnswering.from_pretrained("osiria/bert-italian-uncased-question-answering")
    
pipeline_qa = pipeline("question-answering", model = model, tokenizer = tokenizer)
pipeline_qa(context = "alessandro manzoni è nato a milano nel 1785", question = "dove è nato manzoni?")

{'score': 0.9905025959014893, 'start': 28, 'end': 34, 'answer': 'milano'}

References

[1] https://arxiv.org/abs/1810.04805

[2] https://link.springer.com/chapter/10.1007/978-3-030-03840-3_29

Limitations

This model was trained SQuAD-IT which is mainly a machine translated version of the original SQuAD v1.1. This means that the quality of the training set is limited by the machine translation. Moreover, the model is meant to answer questions under the assumption that the required information is actually contained in the given context (which is the underlying assumption of SQuAD v1.1). If the assumption is violated, the model will try to return an answer in any case, which is going to be incorrect.

License

The model is released under Apache-2.0 license