|
--- |
|
license: apache-2.0 |
|
tags: |
|
- word2vec |
|
- gensim |
|
datasets: |
|
- wikipedia |
|
language: |
|
- it |
|
--- |
|
-------------------------------------------------------------------------------------------------- |
|
|
|
<body> |
|
<span class="vertical-text" style="background-color:lightgreen;border-radius: 3px;padding: 3px;">β</span> |
|
<br> |
|
<span class="vertical-text" style="background-color:orange;border-radius: 3px;padding: 3px;">ββ</span> |
|
<br> |
|
<span class="vertical-text" style="background-color:lightblue;border-radius: 3px;padding: 3px;">ββββModel: Word2Vec</span> |
|
<br> |
|
<span class="vertical-text" style="background-color:tomato;border-radius: 3px;padding: 3px;">ββββLang: IT</span> |
|
<br> |
|
<span class="vertical-text" style="background-color:lightgrey;border-radius: 3px;padding: 3px;">ββ</span> |
|
<br> |
|
<span class="vertical-text" style="background-color:#CF9FFF;border-radius: 3px;padding: 3px;">β</span> |
|
</body> |
|
|
|
-------------------------------------------------------------------------------------------------- |
|
|
|
<h3>Model description</h3> |
|
|
|
This model is a <b>lightweight</b> and uncased version of <b>Word2Vec</b> <b>[1]</b> for the <b>italian</b> language. It's implemented in Gensim and it provides embeddings for 560.509 uncased italian words in a 100-dimensional vector space, resulting in a total model size of about 245 MB. |
|
|
|
|
|
<h3>Training procedure</h3> |
|
|
|
The model was trained on the italian split of the Wikipedia dataset (about 3.7GB, lowercased and pre-processed) for 10 epochs, using a window size of 5 and including words with a minimum count of 10, with an initial learning rate of 2.5e-3 |
|
|
|
|
|
<h3>Quick usage</h3> |
|
|
|
Download the files in a local folder called "word2vec-light-uncased-it", then run: |
|
|
|
```python |
|
from gensim.models import KeyedVectors |
|
|
|
model = KeyedVectors.load("./word2vec-light-uncased-it/word2vec.wordvectors", mmap='r') |
|
|
|
model.most_similar("poesia", topn=5) |
|
``` |
|
|
|
Expected output: |
|
|
|
``` |
|
[('letteratura', 0.8193784356117249), |
|
('poetica', 0.8115736246109009), |
|
('narrativa', 0.7729100584983826), |
|
('drammaturgia', 0.7576397061347961), |
|
('prosa', 0.7552034854888916)] |
|
``` |
|
|
|
<h3>Limitations</h3> |
|
|
|
This lightweight model is trained on Wikipedia, so it's particularly suitable for natively digital text |
|
from the world wide web, written in a correct and fluent form (like wikis, web pages, news, etc.). |
|
|
|
However, it may show limitations when it comes to chaotic text, containing errors and slang expressions |
|
(like social media posts) or when it comes to domain-specific text (like medical, financial or legal content). |
|
|
|
<h3>References</h3> |
|
|
|
[1] https://arxiv.org/abs/1301.3781 |
|
|
|
<h3>License</h3> |
|
|
|
The model is released under <b>Apache-2.0</b> license |