distilhubert-finetuned-gtzan

This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6691
  • Accuracy: 0.86

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.0761 1.0 113 1.9856 0.5
1.3376 2.0 226 1.3481 0.65
1.0645 3.0 339 1.0655 0.68
0.6495 4.0 452 0.8836 0.73
0.4802 5.0 565 0.7388 0.79
0.3875 6.0 678 0.6475 0.74
0.2788 7.0 791 0.5626 0.84
0.0623 8.0 904 0.6053 0.86
0.0848 9.0 1017 0.5784 0.85
0.033 10.0 1130 0.6307 0.86
0.0152 11.0 1243 0.6946 0.82
0.0098 12.0 1356 0.6419 0.87
0.0083 13.0 1469 0.6583 0.87
0.0081 14.0 1582 0.6584 0.87
0.0072 15.0 1695 0.6691 0.86

Framework versions

  • Transformers 4.40.1
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.0
  • Tokenizers 0.19.1
Downloads last month
22
Safetensors
Model size
23.7M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for oyemade/distilhubert-finetuned-gtzan

Finetuned
(404)
this model

Dataset used to train oyemade/distilhubert-finetuned-gtzan

Evaluation results