librarian-bot's picture
Librarian Bot: Add base_model information to model
406c8d6
|
raw
history blame
2.15 kB
metadata
language:
  - ko
license: apache-2.0
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - kr_dialect_speech
metrics:
  - wer
base_model: openai/whisper-small
model-index:
  - name: Whisper Small Ko(Gyungsang dialect) - p4b
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: KR Dialect Speech - gyungsang
          type: kr_dialect_speech
          config: gyungsang
          split: validation
          args: gyungsang
        metrics:
          - type: wer
            value: 15.930018416206263
            name: Wer

Whisper Small Ko(Gyungsang dialect) - p4b

This model is a fine-tuned version of openai/whisper-small on the KR Dialect Speech - gyungsang dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2017
  • Wer: 15.9300

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-07
  • train_batch_size: 96
  • eval_batch_size: 64
  • seed: 42
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000

Training results

Training Loss Epoch Step Validation Loss Wer
0.5909 0.2 1000 0.4133 211.6022
0.3612 0.4 2000 0.2137 16.9429
0.5373 0.6 3000 0.2063 15.8379
0.2909 0.8 4000 0.2012 15.8379
0.3317 1.0 5000 0.2017 15.9300

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.14.0.dev20221208+cu116
  • Datasets 2.7.1.dev0
  • Tokenizers 0.13.2