|
--- |
|
library_name: setfit |
|
tags: |
|
- setfit |
|
- sentence-transformers |
|
- text-classification |
|
- generated_from_setfit_trainer |
|
metrics: |
|
- accuracy |
|
widget: |
|
- text: The best thing about this is it drowned out the call from the guy angry cause |
|
he hadn't gotten a tracking number... http://t.co/QYu8grOrQ1 |
|
- text: 'http://t.co/a0v1ybySOD Its the best time of day!! åÊ @Siren_Voice is #liveonstreamate!' |
|
- text: 16yr old PKK suicide bomber who detonated bomb in Turkey Army trench released |
|
http://t.co/mMkLapX2ok |
|
- text: '#hot Reddit''s new content policy goes into effect many horrible subreddits |
|
banned or quarantined http://t.co/HqdCZzdmbN #prebreak #best' |
|
- text: Heat wave warning aa? Ayyo dei. Just when I plan to visit friends after a |
|
year. |
|
pipeline_tag: text-classification |
|
inference: true |
|
base_model: sentence-transformers/all-mpnet-base-v2 |
|
model-index: |
|
- name: SetFit with sentence-transformers/all-mpnet-base-v2 |
|
results: |
|
- task: |
|
type: text-classification |
|
name: Text Classification |
|
dataset: |
|
name: Unknown |
|
type: unknown |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 0.8098990736900318 |
|
name: Accuracy |
|
--- |
|
|
|
# SetFit with sentence-transformers/all-mpnet-base-v2 |
|
|
|
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. |
|
|
|
The model has been trained using an efficient few-shot learning technique that involves: |
|
|
|
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. |
|
2. Training a classification head with features from the fine-tuned Sentence Transformer. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** SetFit |
|
- **Sentence Transformer body:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) |
|
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance |
|
- **Maximum Sequence Length:** 384 tokens |
|
- **Number of Classes:** 2 classes |
|
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) |
|
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) |
|
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) |
|
|
|
### Model Labels |
|
| Label | Examples | |
|
|:------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| 0 | <ul><li>'peanut butter cookie dough blizzard is ??????????????????????'</li><li>'Free Ebay Sniping RT? http://t.co/B231Ul1O1K Lumbar Extender Back Stretcher Excellent Condition!! ?Please Favorite & Share'</li><li>"'13 M. Chapoutier Crozes Hermitage so much purple violets slate crushed gravel white pepper. Yum #france #wine #DC http://t.co/skvWN38HZ7"</li></ul> | |
|
| 1 | <ul><li>'DUST IN THE WIND: @82ndABNDIV paratroopers move to a loading zone during a dust storm in support of Operation Fury: http://t.co/uGesKLCn8M'</li><li>'Delhi Government to Provide Free Treatment to Acid Attack Victims in Private Hospitals http://t.co/H6PM1W7elL'</li><li>'National Briefing | West: California: Spring Oil Spill Estimate Grows: Documents released on Wednesday disclos... http://t.co/wBi7Laq18E'</li></ul> | |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
| Label | Accuracy | |
|
|:--------|:---------| |
|
| **all** | 0.8099 | |
|
|
|
## Uses |
|
|
|
### Direct Use for Inference |
|
|
|
First install the SetFit library: |
|
|
|
```bash |
|
pip install setfit |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
|
|
```python |
|
from setfit import SetFitModel |
|
|
|
# Download from the 🤗 Hub |
|
model = SetFitModel.from_pretrained("pEpOo/catastrophy") |
|
# Run inference |
|
preds = model("Heat wave warning aa? Ayyo dei. Just when I plan to visit friends after a year.") |
|
``` |
|
|
|
<!-- |
|
### Downstream Use |
|
|
|
*List how someone could finetune this model on their own dataset.* |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Set Metrics |
|
| Training set | Min | Median | Max | |
|
|:-------------|:----|:--------|:----| |
|
| Word count | 2 | 15.3737 | 31 | |
|
|
|
| Label | Training Sample Count | |
|
|:------|:----------------------| |
|
| 0 | 222 | |
|
| 1 | 158 | |
|
|
|
### Training Hyperparameters |
|
- batch_size: (8, 8) |
|
- num_epochs: (1, 1) |
|
- max_steps: -1 |
|
- sampling_strategy: oversampling |
|
- num_iterations: 20 |
|
- body_learning_rate: (2e-05, 2e-05) |
|
- head_learning_rate: 2e-05 |
|
- loss: CosineSimilarityLoss |
|
- distance_metric: cosine_distance |
|
- margin: 0.25 |
|
- end_to_end: False |
|
- use_amp: False |
|
- warmup_proportion: 0.1 |
|
- seed: 42 |
|
- eval_max_steps: -1 |
|
- load_best_model_at_end: False |
|
|
|
### Training Results |
|
| Epoch | Step | Training Loss | Validation Loss | |
|
|:------:|:----:|:-------------:|:---------------:| |
|
| 0.0005 | 1 | 0.3038 | - | |
|
| 0.0263 | 50 | 0.1867 | - | |
|
| 0.0526 | 100 | 0.2578 | - | |
|
| 0.0789 | 150 | 0.2298 | - | |
|
| 0.1053 | 200 | 0.1253 | - | |
|
| 0.1316 | 250 | 0.0446 | - | |
|
| 0.1579 | 300 | 0.1624 | - | |
|
| 0.1842 | 350 | 0.0028 | - | |
|
| 0.2105 | 400 | 0.0059 | - | |
|
| 0.2368 | 450 | 0.0006 | - | |
|
| 0.2632 | 500 | 0.0287 | - | |
|
| 0.2895 | 550 | 0.003 | - | |
|
| 0.3158 | 600 | 0.0004 | - | |
|
| 0.3421 | 650 | 0.0014 | - | |
|
| 0.3684 | 700 | 0.0002 | - | |
|
| 0.3947 | 750 | 0.0001 | - | |
|
| 0.4211 | 800 | 0.0002 | - | |
|
| 0.4474 | 850 | 0.0002 | - | |
|
| 0.4737 | 900 | 0.0002 | - | |
|
| 0.5 | 950 | 0.0826 | - | |
|
| 0.5263 | 1000 | 0.0002 | - | |
|
| 0.5526 | 1050 | 0.0001 | - | |
|
| 0.5789 | 1100 | 0.0003 | - | |
|
| 0.6053 | 1150 | 0.0303 | - | |
|
| 0.6316 | 1200 | 0.0001 | - | |
|
| 0.6579 | 1250 | 0.0 | - | |
|
| 0.6842 | 1300 | 0.0001 | - | |
|
| 0.7105 | 1350 | 0.0 | - | |
|
| 0.7368 | 1400 | 0.0001 | - | |
|
| 0.7632 | 1450 | 0.0002 | - | |
|
| 0.7895 | 1500 | 0.0434 | - | |
|
| 0.8158 | 1550 | 0.0001 | - | |
|
| 0.8421 | 1600 | 0.0 | - | |
|
| 0.8684 | 1650 | 0.0001 | - | |
|
| 0.8947 | 1700 | 0.0001 | - | |
|
| 0.9211 | 1750 | 0.0001 | - | |
|
| 0.9474 | 1800 | 0.0001 | - | |
|
| 0.9737 | 1850 | 0.0001 | - | |
|
| 1.0 | 1900 | 0.0 | - | |
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- SetFit: 1.0.1 |
|
- Sentence Transformers: 2.2.2 |
|
- Transformers: 4.35.2 |
|
- PyTorch: 2.1.0+cu121 |
|
- Datasets: 2.15.0 |
|
- Tokenizers: 0.15.0 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
```bibtex |
|
@article{https://doi.org/10.48550/arxiv.2209.11055, |
|
doi = {10.48550/ARXIV.2209.11055}, |
|
url = {https://arxiv.org/abs/2209.11055}, |
|
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, |
|
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, |
|
title = {Efficient Few-Shot Learning Without Prompts}, |
|
publisher = {arXiv}, |
|
year = {2022}, |
|
copyright = {Creative Commons Attribution 4.0 International} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |