catastrophy8 / README.md
pEpOo's picture
Add SetFit model
029af5a
metadata
library_name: setfit
tags:
  - setfit
  - sentence-transformers
  - text-classification
  - generated_from_setfit_trainer
metrics:
  - accuracy
widget:
  - text: "Rly tragedy in MP: Some live to recount horror: \x89ÛÏWhen I saw coaches of my train plunging into water I called my daughters and said t..."
  - text: You must be annihilated!
  - text: >-
      Severe Thunderstorms and Flash Flooding Possible in the Mid-South and
      Midwest http://t.co/uAhIcWpIh4 #WEATHER #ENVIRONMENT #CLIMATE #NATURE
  - text: >-
      everyone's wonder who will win and I'm over here wondering are those
      grapes real ?????? #BB17
  - text: i swea it feels like im about to explode ??
pipeline_tag: text-classification
inference: true
base_model: sentence-transformers/all-mpnet-base-v2
model-index:
  - name: SetFit with sentence-transformers/all-mpnet-base-v2
    results:
      - task:
          type: text-classification
          name: Text Classification
        dataset:
          name: Unknown
          type: unknown
          split: test
        metrics:
          - type: accuracy
            value: 0.9203152364273205
            name: Accuracy

SetFit with sentence-transformers/all-mpnet-base-v2

This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/all-mpnet-base-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
0
1
  • 'Police officer wounded suspect dead after exchanging shots: RICHMOND Va. (AP) \x89ÛÓ A Richmond police officer wa... http://t.co/Y0qQS2L7bS'
  • "There's a weird siren going off here...I hope Hunterston isn't in the process of blowing itself to smithereens..."
  • 'Iranian warship points weapon at American helicopter... http://t.co/cgFZk8Ha1R'

Evaluation

Metrics

Label Accuracy
all 0.9203

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("pEpOo/catastrophy8")
# Run inference
preds = model("You must be annihilated!")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 1 14.5506 54
Label Training Sample Count
0 438
1 323

Training Hyperparameters

  • batch_size: (20, 20)
  • num_epochs: (1, 1)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 20
  • body_learning_rate: (2e-05, 2e-05)
  • head_learning_rate: 2e-05
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0001 1 0.3847 -
0.0044 50 0.3738 -
0.0088 100 0.2274 -
0.0131 150 0.2747 -
0.0175 200 0.2251 -
0.0219 250 0.2562 -
0.0263 300 0.2623 -
0.0307 350 0.1904 -
0.0350 400 0.2314 -
0.0394 450 0.1669 -
0.0438 500 0.1135 -
0.0482 550 0.1489 -
0.0525 600 0.1907 -
0.0569 650 0.1728 -
0.0613 700 0.125 -
0.0657 750 0.109 -
0.0701 800 0.0968 -
0.0744 850 0.2101 -
0.0788 900 0.1974 -
0.0832 950 0.1986 -
0.0876 1000 0.0747 -
0.0920 1050 0.1117 -
0.0963 1100 0.1092 -
0.1007 1150 0.1582 -
0.1051 1200 0.1243 -
0.1095 1250 0.2873 -
0.1139 1300 0.2415 -
0.1182 1350 0.1264 -
0.1226 1400 0.127 -
0.1270 1450 0.1308 -
0.1314 1500 0.0669 -
0.1358 1550 0.1218 -
0.1401 1600 0.114 -
0.1445 1650 0.0612 -
0.1489 1700 0.0527 -
0.1533 1750 0.1421 -
0.1576 1800 0.0048 -
0.1620 1850 0.0141 -
0.1664 1900 0.0557 -
0.1708 1950 0.0206 -
0.1752 2000 0.1171 -
0.1795 2050 0.0968 -
0.1839 2100 0.0243 -
0.1883 2150 0.0233 -
0.1927 2200 0.0738 -
0.1971 2250 0.0071 -
0.2014 2300 0.0353 -
0.2058 2350 0.0602 -
0.2102 2400 0.003 -
0.2146 2450 0.0625 -
0.2190 2500 0.0173 -
0.2233 2550 0.1017 -
0.2277 2600 0.0582 -
0.2321 2650 0.0437 -
0.2365 2700 0.104 -
0.2408 2750 0.0156 -
0.2452 2800 0.0034 -
0.2496 2850 0.0343 -
0.2540 2900 0.1106 -
0.2584 2950 0.001 -
0.2627 3000 0.004 -
0.2671 3050 0.0074 -
0.2715 3100 0.0849 -
0.2759 3150 0.0009 -
0.2803 3200 0.0379 -
0.2846 3250 0.0109 -
0.2890 3300 0.0019 -
0.2934 3350 0.0154 -
0.2978 3400 0.0017 -
0.3022 3450 0.0003 -
0.3065 3500 0.0002 -
0.3109 3550 0.0025 -
0.3153 3600 0.0123 -
0.3197 3650 0.0007 -
0.3240 3700 0.0534 -
0.3284 3750 0.0004 -
0.3328 3800 0.0084 -
0.3372 3850 0.0088 -
0.3416 3900 0.0201 -
0.3459 3950 0.0002 -
0.3503 4000 0.0102 -
0.3547 4050 0.0043 -
0.3591 4100 0.0124 -
0.3635 4150 0.0845 -
0.3678 4200 0.0002 -
0.3722 4250 0.0014 -
0.3766 4300 0.1131 -
0.3810 4350 0.0612 -
0.3854 4400 0.0577 -
0.3897 4450 0.0235 -
0.3941 4500 0.0156 -
0.3985 4550 0.0078 -
0.4029 4600 0.0356 -
0.4073 4650 0.0595 -
0.4116 4700 0.0001 -
0.4160 4750 0.0018 -
0.4204 4800 0.0013 -
0.4248 4850 0.0008 -
0.4291 4900 0.0832 -
0.4335 4950 0.0083 -
0.4379 5000 0.0007 -
0.4423 5050 0.0417 -
0.4467 5100 0.0001 -
0.4510 5150 0.0218 -
0.4554 5200 0.0001 -
0.4598 5250 0.0012 -
0.4642 5300 0.0002 -
0.4686 5350 0.0006 -
0.4729 5400 0.0223 -
0.4773 5450 0.0612 -
0.4817 5500 0.0004 -
0.4861 5550 0.0 -
0.4905 5600 0.0007 -
0.4948 5650 0.0007 -
0.4992 5700 0.0116 -
0.5036 5750 0.0262 -
0.5080 5800 0.0336 -
0.5123 5850 0.026 -
0.5167 5900 0.0004 -
0.5211 5950 0.0001 -
0.5255 6000 0.0001 -
0.5299 6050 0.0001 -
0.5342 6100 0.0029 -
0.5386 6150 0.0001 -
0.5430 6200 0.0699 -
0.5474 6250 0.0262 -
0.5518 6300 0.0269 -
0.5561 6350 0.0002 -
0.5605 6400 0.0666 -
0.5649 6450 0.0209 -
0.5693 6500 0.0003 -
0.5737 6550 0.0001 -
0.5780 6600 0.0115 -
0.5824 6650 0.0003 -
0.5868 6700 0.0001 -
0.5912 6750 0.0056 -
0.5956 6800 0.0603 -
0.5999 6850 0.0002 -
0.6043 6900 0.0003 -
0.6087 6950 0.0092 -
0.6131 7000 0.0562 -
0.6174 7050 0.0408 -
0.6218 7100 0.0001 -
0.6262 7150 0.0035 -
0.6306 7200 0.0337 -
0.6350 7250 0.0024 -
0.6393 7300 0.0005 -
0.6437 7350 0.0001 -
0.6481 7400 0.0 -
0.6525 7450 0.0001 -
0.6569 7500 0.0002 -
0.6612 7550 0.0004 -
0.6656 7600 0.0125 -
0.6700 7650 0.0005 -
0.6744 7700 0.0157 -
0.6788 7750 0.0055 -
0.6831 7800 0.0 -
0.6875 7850 0.0053 -
0.6919 7900 0.0 -
0.6963 7950 0.0002 -
0.7006 8000 0.0002 -
0.7050 8050 0.0001 -
0.7094 8100 0.0001 -
0.7138 8150 0.0001 -
0.7182 8200 0.0007 -
0.7225 8250 0.0002 -
0.7269 8300 0.0001 -
0.7313 8350 0.0 -
0.7357 8400 0.0156 -
0.7401 8450 0.0098 -
0.7444 8500 0.0 -
0.7488 8550 0.0001 -
0.7532 8600 0.0042 -
0.7576 8650 0.0 -
0.7620 8700 0.0 -
0.7663 8750 0.0056 -
0.7707 8800 0.0 -
0.7751 8850 0.0 -
0.7795 8900 0.013 -
0.7839 8950 0.0 -
0.7882 9000 0.0001 -
0.7926 9050 0.0 -
0.7970 9100 0.0 -
0.8014 9150 0.0 -
0.8057 9200 0.0 -
0.8101 9250 0.0 -
0.8145 9300 0.0007 -
0.8189 9350 0.0 -
0.8233 9400 0.0002 -
0.8276 9450 0.0 -
0.8320 9500 0.0 -
0.8364 9550 0.0089 -
0.8408 9600 0.0001 -
0.8452 9650 0.0 -
0.8495 9700 0.0 -
0.8539 9750 0.0 -
0.8583 9800 0.0565 -
0.8627 9850 0.0161 -
0.8671 9900 0.0 -
0.8714 9950 0.0246 -
0.8758 10000 0.0 -
0.8802 10050 0.0 -
0.8846 10100 0.012 -
0.8889 10150 0.0 -
0.8933 10200 0.0 -
0.8977 10250 0.0 -
0.9021 10300 0.0 -
0.9065 10350 0.0 -
0.9108 10400 0.0 -
0.9152 10450 0.0 -
0.9196 10500 0.0 -
0.9240 10550 0.0023 -
0.9284 10600 0.0 -
0.9327 10650 0.0006 -
0.9371 10700 0.0 -
0.9415 10750 0.0 -
0.9459 10800 0.0 -
0.9503 10850 0.0 -
0.9546 10900 0.0 -
0.9590 10950 0.0243 -
0.9634 11000 0.0107 -
0.9678 11050 0.0001 -
0.9721 11100 0.0 -
0.9765 11150 0.0 -
0.9809 11200 0.0274 -
0.9853 11250 0.0 -
0.9897 11300 0.0 -
0.9940 11350 0.0 -
0.9984 11400 0.0 -
0.0007 1 0.2021 -
0.0329 50 0.1003 -
0.0657 100 0.2282 -
0.0986 150 0.0507 -
0.1314 200 0.046 -
0.1643 250 0.0001 -
0.1971 300 0.0495 -
0.2300 350 0.0031 -
0.2628 400 0.0004 -
0.2957 450 0.0002 -
0.3285 500 0.0 -
0.3614 550 0.0 -
0.3942 600 0.0 -
0.4271 650 0.0001 -
0.4599 700 0.0 -
0.4928 750 0.0 -
0.5256 800 0.0 -
0.5585 850 0.0 -
0.5913 900 0.0001 -
0.6242 950 0.0 -
0.6570 1000 0.0001 -
0.6899 1050 0.0 -
0.7227 1100 0.0 -
0.7556 1150 0.0 -
0.7884 1200 0.0 -
0.8213 1250 0.0 -
0.8541 1300 0.0 -
0.8870 1350 0.0 -
0.9198 1400 0.0 -
0.9527 1450 0.0001 -
0.9855 1500 0.0 -

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.0.1
  • Sentence Transformers: 2.2.2
  • Transformers: 4.35.2
  • PyTorch: 2.1.0+cu121
  • Datasets: 2.15.0
  • Tokenizers: 0.15.0

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}