pableitorr commited on
Commit
cf1c675
1 Parent(s): ef98fa3

Initial commit

Browse files
README.md CHANGED
@@ -16,7 +16,7 @@ model-index:
16
  type: PandaPickAndPlace-v3
17
  metrics:
18
  - type: mean_reward
19
- value: -6.30 +/- 1.55
20
  name: mean_reward
21
  verified: false
22
  ---
 
16
  type: PandaPickAndPlace-v3
17
  metrics:
18
  - type: mean_reward
19
+ value: -5.50 +/- 2.06
20
  name: mean_reward
21
  verified: false
22
  ---
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": -6.3, "std_reward": 1.5524174696260022, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-10-08T16:29:13.645229"}
 
1
+ {"mean_reward": -5.5, "std_reward": 2.0615528128088303, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-10-08T16:38:33.319268"}
tqc-PandaPickAndPlace-v3.zip CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:e13cd95c2383021702a731f73367d2f39b53232da4d2b761cc15251b70463e0a
3
  size 24284579
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:20cc4e2dace651137a6e7179982211e5c925255cc1df9b503a1ef32a0c2353f9
3
  size 24284579
tqc-PandaPickAndPlace-v3/data CHANGED
@@ -4,9 +4,9 @@
4
  ":serialized:": "gAWVMQAAAAAAAACMGHNiM19jb250cmliLnRxYy5wb2xpY2llc5SMEE11bHRpSW5wdXRQb2xpY3mUk5Qu",
5
  "__module__": "sb3_contrib.tqc.policies",
6
  "__doc__": "\n Policy class (with both actor and critic) for TQC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_quantiles: Number of quantiles for the critic.\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
7
- "__init__": "<function MultiInputPolicy.__init__ at 0x0000026FCC0B6050>",
8
  "__abstractmethods__": "frozenset()",
9
- "_abc_impl": "<_abc._abc_data object at 0x0000026FCC0B3080>"
10
  },
11
  "verbose": 1,
12
  "policy_kwargs": {
@@ -92,19 +92,19 @@
92
  "__module__": "stable_baselines3.her.her_replay_buffer",
93
  "__annotations__": "{'env': typing.Optional[stable_baselines3.common.vec_env.base_vec_env.VecEnv]}",
94
  "__doc__": "\n Hindsight Experience Replay (HER) buffer.\n Paper: https://arxiv.org/abs/1707.01495\n\n Replay buffer for sampling HER (Hindsight Experience Replay) transitions.\n\n .. note::\n\n Compared to other implementations, the ``future`` goal sampling strategy is inclusive:\n the current transition can be used when re-sampling.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param env: The training environment\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n Disabled for now (see https://github.com/DLR-RM/stable-baselines3/pull/243#discussion_r531535702)\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n :param n_sampled_goal: Number of virtual transitions to create per real transition,\n by sampling new goals.\n :param goal_selection_strategy: Strategy for sampling goals for replay.\n One of ['episode', 'final', 'future']\n :param copy_info_dict: Whether to copy the info dictionary and pass it to\n ``compute_reward()`` method.\n Please note that the copy may cause a slowdown.\n False by default.\n ",
95
- "__init__": "<function HerReplayBuffer.__init__ at 0x0000026FCBA36200>",
96
- "__getstate__": "<function HerReplayBuffer.__getstate__ at 0x0000026FCBA36290>",
97
- "__setstate__": "<function HerReplayBuffer.__setstate__ at 0x0000026FCBA36320>",
98
- "set_env": "<function HerReplayBuffer.set_env at 0x0000026FCBA363B0>",
99
- "add": "<function HerReplayBuffer.add at 0x0000026FCBA36440>",
100
- "_compute_episode_length": "<function HerReplayBuffer._compute_episode_length at 0x0000026FCBA364D0>",
101
- "sample": "<function HerReplayBuffer.sample at 0x0000026FCBA36560>",
102
- "_get_real_samples": "<function HerReplayBuffer._get_real_samples at 0x0000026FCBA365F0>",
103
- "_get_virtual_samples": "<function HerReplayBuffer._get_virtual_samples at 0x0000026FCBA36680>",
104
- "_sample_goals": "<function HerReplayBuffer._sample_goals at 0x0000026FCBA36710>",
105
- "truncate_last_trajectory": "<function HerReplayBuffer.truncate_last_trajectory at 0x0000026FCBA367A0>",
106
  "__abstractmethods__": "frozenset()",
107
- "_abc_impl": "<_abc._abc_data object at 0x0000026FCBA50680>"
108
  },
109
  "replay_buffer_kwargs": {
110
  "goal_selection_strategy": "future",
 
4
  ":serialized:": "gAWVMQAAAAAAAACMGHNiM19jb250cmliLnRxYy5wb2xpY2llc5SMEE11bHRpSW5wdXRQb2xpY3mUk5Qu",
5
  "__module__": "sb3_contrib.tqc.policies",
6
  "__doc__": "\n Policy class (with both actor and critic) for TQC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_quantiles: Number of quantiles for the critic.\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
7
+ "__init__": "<function MultiInputPolicy.__init__ at 0x000001F2EF892050>",
8
  "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x000001F2EF896D80>"
10
  },
11
  "verbose": 1,
12
  "policy_kwargs": {
 
92
  "__module__": "stable_baselines3.her.her_replay_buffer",
93
  "__annotations__": "{'env': typing.Optional[stable_baselines3.common.vec_env.base_vec_env.VecEnv]}",
94
  "__doc__": "\n Hindsight Experience Replay (HER) buffer.\n Paper: https://arxiv.org/abs/1707.01495\n\n Replay buffer for sampling HER (Hindsight Experience Replay) transitions.\n\n .. note::\n\n Compared to other implementations, the ``future`` goal sampling strategy is inclusive:\n the current transition can be used when re-sampling.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param env: The training environment\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n Disabled for now (see https://github.com/DLR-RM/stable-baselines3/pull/243#discussion_r531535702)\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n :param n_sampled_goal: Number of virtual transitions to create per real transition,\n by sampling new goals.\n :param goal_selection_strategy: Strategy for sampling goals for replay.\n One of ['episode', 'final', 'future']\n :param copy_info_dict: Whether to copy the info dictionary and pass it to\n ``compute_reward()`` method.\n Please note that the copy may cause a slowdown.\n False by default.\n ",
95
+ "__init__": "<function HerReplayBuffer.__init__ at 0x000001F2EF216200>",
96
+ "__getstate__": "<function HerReplayBuffer.__getstate__ at 0x000001F2EF216290>",
97
+ "__setstate__": "<function HerReplayBuffer.__setstate__ at 0x000001F2EF216320>",
98
+ "set_env": "<function HerReplayBuffer.set_env at 0x000001F2EF2163B0>",
99
+ "add": "<function HerReplayBuffer.add at 0x000001F2EF216440>",
100
+ "_compute_episode_length": "<function HerReplayBuffer._compute_episode_length at 0x000001F2EF2164D0>",
101
+ "sample": "<function HerReplayBuffer.sample at 0x000001F2EF216560>",
102
+ "_get_real_samples": "<function HerReplayBuffer._get_real_samples at 0x000001F2EF2165F0>",
103
+ "_get_virtual_samples": "<function HerReplayBuffer._get_virtual_samples at 0x000001F2EF216680>",
104
+ "_sample_goals": "<function HerReplayBuffer._sample_goals at 0x000001F2EF216710>",
105
+ "truncate_last_trajectory": "<function HerReplayBuffer.truncate_last_trajectory at 0x000001F2EF2167A0>",
106
  "__abstractmethods__": "frozenset()",
107
+ "_abc_impl": "<_abc._abc_data object at 0x000001F2EF230600>"
108
  },
109
  "replay_buffer_kwargs": {
110
  "goal_selection_strategy": "future",