|
--- |
|
license: apache-2.0 |
|
base_model: google/mt5-base |
|
tags: |
|
- generated_from_keras_callback |
|
model-index: |
|
- name: pakawadeep/mt5-base-finetuned-ctfl-augmented_05 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information Keras had access to. You should |
|
probably proofread and complete it, then remove this comment. --> |
|
|
|
# pakawadeep/mt5-base-finetuned-ctfl-augmented_05 |
|
|
|
This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Train Loss: 0.4976 |
|
- Validation Loss: 0.7550 |
|
- Train Rouge1: 7.9208 |
|
- Train Rouge2: 0.7921 |
|
- Train Rougel: 7.9444 |
|
- Train Rougelsum: 8.0387 |
|
- Train Gen Len: 11.8614 |
|
- Epoch: 22 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} |
|
- training_precision: float32 |
|
|
|
### Training results |
|
|
|
| Train Loss | Validation Loss | Train Rouge1 | Train Rouge2 | Train Rougel | Train Rougelsum | Train Gen Len | Epoch | |
|
|:----------:|:---------------:|:------------:|:------------:|:------------:|:---------------:|:-------------:|:-----:| |
|
| 5.9893 | 2.6002 | 4.4884 | 0.4950 | 4.3454 | 4.3399 | 8.3168 | 0 | |
|
| 2.9777 | 2.0796 | 4.7619 | 0.3300 | 4.7000 | 4.8444 | 10.2723 | 1 | |
|
| 2.3190 | 1.7755 | 6.4356 | 1.0891 | 6.5064 | 6.5535 | 10.6881 | 2 | |
|
| 1.8959 | 1.4532 | 7.4965 | 1.5842 | 7.4257 | 7.5436 | 11.3911 | 3 | |
|
| 1.5823 | 1.2455 | 7.7086 | 2.0792 | 7.4965 | 7.7086 | 11.7673 | 4 | |
|
| 1.3569 | 1.1076 | 8.4866 | 2.0792 | 8.4866 | 8.6987 | 11.8861 | 5 | |
|
| 1.2095 | 1.0615 | 8.4866 | 2.0792 | 8.4866 | 8.6987 | 11.9802 | 6 | |
|
| 1.1007 | 0.9902 | 8.9109 | 2.2772 | 8.7694 | 8.9816 | 11.9455 | 7 | |
|
| 1.0050 | 0.9564 | 8.9109 | 2.2772 | 8.7694 | 8.9816 | 11.9455 | 8 | |
|
| 0.9284 | 0.8988 | 8.6987 | 1.7822 | 8.6752 | 8.8166 | 11.9307 | 9 | |
|
| 0.8636 | 0.8796 | 8.6987 | 1.7822 | 8.6752 | 8.8166 | 11.9109 | 10 | |
|
| 0.8182 | 0.8624 | 8.3687 | 1.2871 | 8.3628 | 8.5337 | 11.8762 | 11 | |
|
| 0.7744 | 0.8172 | 8.3687 | 1.2871 | 8.3628 | 8.5337 | 11.8812 | 12 | |
|
| 0.7333 | 0.8051 | 8.3687 | 1.2871 | 8.3628 | 8.5337 | 11.9208 | 13 | |
|
| 0.6928 | 0.8167 | 8.2744 | 1.2871 | 8.2744 | 8.4689 | 11.9109 | 14 | |
|
| 0.6587 | 0.7863 | 8.2744 | 1.2871 | 8.2744 | 8.4689 | 11.8960 | 15 | |
|
| 0.6302 | 0.7844 | 8.2744 | 1.2871 | 8.2744 | 8.4689 | 11.8960 | 16 | |
|
| 0.6025 | 0.7772 | 8.2744 | 1.2871 | 8.2744 | 8.4689 | 11.9059 | 17 | |
|
| 0.5816 | 0.7697 | 8.2744 | 1.2871 | 8.2744 | 8.4689 | 11.8861 | 18 | |
|
| 0.5561 | 0.7654 | 8.2744 | 1.2871 | 8.2744 | 8.4689 | 11.8317 | 19 | |
|
| 0.5359 | 0.7703 | 8.2744 | 1.2871 | 8.2744 | 8.4689 | 11.8861 | 20 | |
|
| 0.5144 | 0.7546 | 7.9208 | 0.7921 | 7.9444 | 8.0387 | 11.8564 | 21 | |
|
| 0.4976 | 0.7550 | 7.9208 | 0.7921 | 7.9444 | 8.0387 | 11.8614 | 22 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.2 |
|
- TensorFlow 2.15.0 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |
|
|