|
--- |
|
license: apache-2.0 |
|
base_model: google/mt5-large |
|
tags: |
|
- generated_from_keras_callback |
|
model-index: |
|
- name: pakawadeep/mt5-large-finetuned-ctfl |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information Keras had access to. You should |
|
probably proofread and complete it, then remove this comment. --> |
|
|
|
# pakawadeep/mt5-large-finetuned-ctfl |
|
|
|
This model is a fine-tuned version of [google/mt5-large](https://huggingface.co/google/mt5-large) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Train Loss: 0.7379 |
|
- Validation Loss: 0.8383 |
|
- Train Rouge1: 8.9816 |
|
- Train Rouge2: 2.3762 |
|
- Train Rougel: 8.9109 |
|
- Train Rougelsum: 8.9109 |
|
- Train Gen Len: 11.9752 |
|
- Epoch: 27 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- optimizer: {'name': 'AdamWeightDecay', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False, 'weight_decay_rate': 0.01} |
|
- training_precision: float32 |
|
|
|
### Training results |
|
|
|
| Train Loss | Validation Loss | Train Rouge1 | Train Rouge2 | Train Rougel | Train Rougelsum | Train Gen Len | Epoch | |
|
|:----------:|:---------------:|:------------:|:------------:|:------------:|:---------------:|:-------------:|:-----:| |
|
| 11.3596 | 5.2319 | 2.5366 | 0.5088 | 2.5148 | 2.4929 | 19.0 | 0 | |
|
| 6.1803 | 3.1508 | 2.7057 | 0.5265 | 2.6846 | 2.6643 | 19.0 | 1 | |
|
| 4.6767 | 2.5774 | 2.7471 | 0.5265 | 2.7054 | 2.6899 | 18.3218 | 2 | |
|
| 3.8698 | 2.8216 | 2.9763 | 0.2200 | 2.8792 | 2.8987 | 16.6238 | 3 | |
|
| 4.7045 | 2.7911 | 3.2793 | 0.5501 | 3.1484 | 3.2486 | 14.1881 | 4 | |
|
| 4.0342 | 2.4191 | 5.9406 | 0.6365 | 5.7206 | 5.8306 | 10.6980 | 5 | |
|
| 3.4642 | 2.1307 | 5.9406 | 0.9406 | 5.7756 | 5.8463 | 11.2228 | 6 | |
|
| 3.0690 | 1.9079 | 6.0644 | 0.9901 | 5.9406 | 6.0644 | 11.2228 | 7 | |
|
| 2.6140 | 1.7092 | 5.7756 | 0.8251 | 5.6518 | 5.8168 | 11.4604 | 8 | |
|
| 2.4520 | 1.6478 | 5.8581 | 0.8251 | 5.6931 | 5.8581 | 11.0842 | 9 | |
|
| 2.2701 | 1.5641 | 5.9406 | 0.8251 | 5.8581 | 5.8581 | 10.8465 | 10 | |
|
| 2.0735 | 1.4839 | 7.3020 | 1.0726 | 7.1370 | 7.2814 | 11.0891 | 11 | |
|
| 1.8757 | 1.3780 | 7.4670 | 1.0726 | 7.3020 | 7.4257 | 11.2228 | 12 | |
|
| 1.7313 | 1.3204 | 7.3020 | 1.0726 | 7.1370 | 7.2814 | 11.5842 | 13 | |
|
| 1.5944 | 1.2466 | 7.4670 | 1.0726 | 7.3020 | 7.4257 | 11.6485 | 14 | |
|
| 1.4894 | 1.1993 | 8.0858 | 1.5677 | 7.9208 | 8.1271 | 11.6139 | 15 | |
|
| 1.3939 | 1.1446 | 8.1271 | 2.0627 | 8.0033 | 8.0858 | 11.7030 | 16 | |
|
| 1.3065 | 1.0837 | 7.7558 | 1.5677 | 7.5083 | 7.5908 | 11.8168 | 17 | |
|
| 1.2367 | 1.0604 | 8.0387 | 1.9307 | 7.9915 | 7.9679 | 11.9356 | 18 | |
|
| 1.1569 | 1.0071 | 7.6143 | 1.4356 | 7.4257 | 7.4965 | 11.8515 | 19 | |
|
| 1.0732 | 0.9713 | 8.5809 | 1.9307 | 8.4158 | 8.4512 | 11.8465 | 20 | |
|
| 1.0204 | 0.9582 | 8.5809 | 1.9307 | 8.4158 | 8.4512 | 11.8317 | 21 | |
|
| 0.9636 | 0.9317 | 8.5809 | 1.9307 | 8.4158 | 8.4512 | 11.8416 | 22 | |
|
| 0.9054 | 0.8921 | 8.5809 | 1.9307 | 8.4158 | 8.4512 | 11.8663 | 23 | |
|
| 0.8685 | 0.8795 | 9.0759 | 2.4257 | 8.9109 | 8.9109 | 11.8861 | 24 | |
|
| 0.8100 | 0.8666 | 8.9816 | 2.3762 | 8.9109 | 8.9109 | 11.9455 | 25 | |
|
| 0.7749 | 0.8524 | 8.9816 | 2.3762 | 8.9109 | 8.9109 | 11.9505 | 26 | |
|
| 0.7379 | 0.8383 | 8.9816 | 2.3762 | 8.9109 | 8.9109 | 11.9752 | 27 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.38.2 |
|
- TensorFlow 2.15.0 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |
|
|