|
--- |
|
license: llama3.3 |
|
datasets: |
|
- pankajmathur/orca_mini_v1_dataset |
|
language: |
|
- en |
|
base_model: |
|
- meta-llama/Llama-3.3-70B-Instruct |
|
library_name: transformers |
|
--- |
|
|
|
# Model Name: orca_mini_v8_1_Llama-3.3-70B-Instruct |
|
|
|
**orca_mini_v8_1_Llama-3.3-70B-Instruct is trained with various SFT Datasets** |
|
|
|
<img src="https://huggingface.co/pankajmathur/orca_mini_v5_8b/resolve/main/orca_minis_small.jpeg" width="auto" /> |
|
|
|
<strong> |
|
Passionate about Generative AI? I help companies to privately train and deploy custom use case specific LLM/MLLM affordably. For startups, I can even assist with securing GPU grants to get you started. Let's chat! |
|
|
|
<a href="https://www.linkedin.com/in/pankajam" target="_blank">https://www.linkedin.com/in/pankajam</a> Looking forward to connecting! |
|
</strong> |
|
|
|
<br> |
|
|
|
### NOTICE |
|
By providing proper credit and attribution, you are granted permission to use this model as a foundational base for further Full fine tuning, DPO, PPO or ORPO tuning and any kind of Merges. |
|
I actively encourage users to customize and enhance the model according to their specific needs, as this version is designed to be a comprehensive general model. |
|
Dive in and innovate! |
|
|
|
|
|
### Example Usage |
|
Here is the Llama3 prompt format |
|
``` |
|
<|begin_of_text|><|start_header_id|>system<|end_header_id|> |
|
You are Orca Mini, a helpful AI assistant.<|eot_id|> |
|
<|start_header_id|>user<|end_header_id|> |
|
Hello Orca Mini, what can you do for me?<|eot_id|> |
|
<|start_header_id|>assistant<|end_header_id|> |
|
``` |
|
|
|
Below shows a code example on how to use this model in default(bf16) format |
|
|
|
```python |
|
from transformers import AutoModel, AutoTokenizer |
|
model_slug = "pankajmathur/orca_mini_v8_1_70b" |
|
model = AutoModel.from_pretrained(model_slug) |
|
tokenizer = AutoTokenizer.from_pretrained(model_slug) |
|
messages = [ |
|
{"role": "system", "content": "You are Orca Mini, a helpful AI assistant."}, |
|
{"role": "user", "content": "Hello Orca Mini, what can you do for me?"} |
|
] |
|
gen_input = tokenizer.apply_chat_template(messages, return_tensors="pt") |
|
model.generate(**gen_input) |
|
``` |
|
|
|
Below shows a code example on how to use this model in 4-bit format via bitsandbytes library |
|
|
|
```python |
|
from transformers import AutoModel, AutoTokenizer, BitsAndBytesConfig |
|
model_slug = "pankajmathur/orca_mini_v8_1_70b" |
|
quantization_config = BitsAndBytesConfig(load_in_4bit=True) |
|
quantized_model = AutoModelForCausalLM.from_pretrained( |
|
model_slug, device_map="auto", torch_dtype=torch.bfloat16, quantization_config=quantization_config) |
|
tokenizer = AutoTokenizer.from_pretrained(model_slug) |
|
messages = [ |
|
{"role": "system", "content": "You are Orca Mini, a helpful AI assistant."}, |
|
{"role": "user", "content": "Hello Orca Mini, what can you do for me?"} |
|
] |
|
gen_input = tokenizer.apply_chat_template(messages, return_tensors="pt") |
|
quantized_model.generate(**gen_input) |
|
``` |
|
|
|
Below shows a code example on how to do a tool use with this model and tranformer library |
|
|
|
Since **orca_mini_v8_1_70b** is based upon LLaMA-3.3, it supports multiple tool use formats. You can see a full guide to prompt formatting [here](https://llama.meta.com/docs/model-cards-and-prompt-formats/llama3_1/). |
|
|
|
Tool use is also supported through [chat templates](https://huggingface.co/docs/transformers/main/chat_templating#advanced-tool-use--function-calling) in Transformers. |
|
Here is a quick example showing a single simple tool: |
|
|
|
```python |
|
# First, define a tool |
|
def get_current_temperature(location: str) -> float: |
|
""" |
|
Get the current temperature at a location. |
|
|
|
Args: |
|
location: The location to get the temperature for, in the format "City, Country" |
|
Returns: |
|
The current temperature at the specified location in the specified units, as a float. |
|
""" |
|
return 22. # A real function should probably actually get the temperature! |
|
|
|
# Next, create a chat and apply the chat template |
|
messages = [ |
|
{"role": "system", "content": "You are a bot that responds to weather queries."}, |
|
{"role": "user", "content": "Hey, what's the temperature in Paris right now?"} |
|
] |
|
|
|
inputs = tokenizer.apply_chat_template(messages, tools=[get_current_temperature], add_generation_prompt=True) |
|
``` |
|
|
|
You can then generate text from this input as normal. If the model generates a tool call, you should add it to the chat like so: |
|
|
|
```python |
|
tool_call = {"name": "get_current_temperature", "arguments": {"location": "Paris, France"}} |
|
messages.append({"role": "assistant", "tool_calls": [{"type": "function", "function": tool_call}]}) |
|
``` |
|
|
|
and then call the tool and append the result, with the `tool` role, like so: |
|
|
|
```python |
|
messages.append({"role": "tool", "name": "get_current_temperature", "content": "22.0"}) |
|
``` |
|
|
|
After that, you can `generate()` again to let the model use the tool result in the chat. Note that this was a very brief introduction to tool calling - for more information, |
|
see the [LLaMA prompt format docs](https://llama.meta.com/docs/model-cards-and-prompt-formats/llama3_1/) and the Transformers [tool use documentation](https://huggingface.co/docs/transformers/main/chat_templating#advanced-tool-use--function-calling). |
|
|
|
|
|
|