recipe-distilbert-tis

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9886

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 256
  • eval_batch_size: 256
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
1.8792 1.0 1038 1.4680
1.4691 2.0 2076 1.3122
1.3471 3.0 3114 1.2343
1.2798 4.0 4152 1.1829
1.2284 5.0 5190 1.1437
1.1956 6.0 6228 1.1120
1.1683 7.0 7266 1.0905
1.1458 8.0 8304 1.0731
1.126 9.0 9342 1.0645
1.113 10.0 10380 1.0471
1.0962 11.0 11418 1.0348
1.0864 12.0 12456 1.0256
1.0772 13.0 13494 1.0173
1.0692 14.0 14532 1.0130
1.0622 15.0 15570 1.0111
1.0577 16.0 16608 1.0021
1.0537 17.0 17646 1.0001
1.0474 18.0 18684 0.9928
1.0471 19.0 19722 0.9908
1.0458 20.0 20760 0.9886

Framework versions

  • Transformers 4.19.0.dev0
  • Pytorch 1.11.0+cu102
  • Datasets 2.3.2
  • Tokenizers 0.12.1
Downloads last month
16
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.