update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
model-index:
|
6 |
+
- name: recipe-distilbert-tis
|
7 |
+
results: []
|
8 |
+
---
|
9 |
+
|
10 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
11 |
+
should probably proofread and complete it, then remove this comment. -->
|
12 |
+
|
13 |
+
# recipe-distilbert-tis
|
14 |
+
|
15 |
+
This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
|
16 |
+
It achieves the following results on the evaluation set:
|
17 |
+
- Loss: 0.9886
|
18 |
+
|
19 |
+
## Model description
|
20 |
+
|
21 |
+
More information needed
|
22 |
+
|
23 |
+
## Intended uses & limitations
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Training and evaluation data
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training procedure
|
32 |
+
|
33 |
+
### Training hyperparameters
|
34 |
+
|
35 |
+
The following hyperparameters were used during training:
|
36 |
+
- learning_rate: 2e-05
|
37 |
+
- train_batch_size: 256
|
38 |
+
- eval_batch_size: 256
|
39 |
+
- seed: 42
|
40 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
41 |
+
- lr_scheduler_type: linear
|
42 |
+
- num_epochs: 20
|
43 |
+
- mixed_precision_training: Native AMP
|
44 |
+
|
45 |
+
### Training results
|
46 |
+
|
47 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
48 |
+
|:-------------:|:-----:|:-----:|:---------------:|
|
49 |
+
| 1.8792 | 1.0 | 1038 | 1.4680 |
|
50 |
+
| 1.4691 | 2.0 | 2076 | 1.3122 |
|
51 |
+
| 1.3471 | 3.0 | 3114 | 1.2343 |
|
52 |
+
| 1.2798 | 4.0 | 4152 | 1.1829 |
|
53 |
+
| 1.2284 | 5.0 | 5190 | 1.1437 |
|
54 |
+
| 1.1956 | 6.0 | 6228 | 1.1120 |
|
55 |
+
| 1.1683 | 7.0 | 7266 | 1.0905 |
|
56 |
+
| 1.1458 | 8.0 | 8304 | 1.0731 |
|
57 |
+
| 1.126 | 9.0 | 9342 | 1.0645 |
|
58 |
+
| 1.113 | 10.0 | 10380 | 1.0471 |
|
59 |
+
| 1.0962 | 11.0 | 11418 | 1.0348 |
|
60 |
+
| 1.0864 | 12.0 | 12456 | 1.0256 |
|
61 |
+
| 1.0772 | 13.0 | 13494 | 1.0173 |
|
62 |
+
| 1.0692 | 14.0 | 14532 | 1.0130 |
|
63 |
+
| 1.0622 | 15.0 | 15570 | 1.0111 |
|
64 |
+
| 1.0577 | 16.0 | 16608 | 1.0021 |
|
65 |
+
| 1.0537 | 17.0 | 17646 | 1.0001 |
|
66 |
+
| 1.0474 | 18.0 | 18684 | 0.9928 |
|
67 |
+
| 1.0471 | 19.0 | 19722 | 0.9908 |
|
68 |
+
| 1.0458 | 20.0 | 20760 | 0.9886 |
|
69 |
+
|
70 |
+
|
71 |
+
### Framework versions
|
72 |
+
|
73 |
+
- Transformers 4.19.0.dev0
|
74 |
+
- Pytorch 1.11.0+cu102
|
75 |
+
- Datasets 2.3.2
|
76 |
+
- Tokenizers 0.12.1
|