paolinox's picture
paolinox/segformer-FT-food101
0f28946
metadata
license: other
base_model: nvidia/mit-b0
tags:
  - generated_from_trainer
datasets:
  - food101
metrics:
  - accuracy
model-index:
  - name: segformer-finetuned-food101
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: food101
          type: food101
          config: default
          split: train[:5000]
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.888

segformer-finetuned-food101

This model is a fine-tuned version of nvidia/mit-b0 on the food101 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3478
  • Accuracy: 0.888

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.0272 0.98 23 1.8039 0.329
1.5806 2.0 47 1.2465 0.608
1.0564 2.98 70 0.7507 0.756
0.7358 4.0 94 0.6263 0.784
0.6482 4.98 117 0.5551 0.795
0.5692 6.0 141 0.5849 0.794
0.5552 6.98 164 0.4931 0.831
0.4956 8.0 188 0.5166 0.83
0.4748 8.98 211 0.4808 0.834
0.424 10.0 235 0.4238 0.852
0.4314 10.98 258 0.4858 0.838
0.4071 12.0 282 0.4304 0.858
0.3928 12.98 305 0.4621 0.851
0.3695 14.0 329 0.4398 0.859
0.3704 14.98 352 0.4172 0.855
0.3299 16.0 376 0.4225 0.856
0.3391 16.98 399 0.4165 0.855
0.3023 18.0 423 0.3828 0.869
0.3318 18.98 446 0.4190 0.861
0.2994 20.0 470 0.4190 0.861
0.323 20.98 493 0.4034 0.866
0.2883 22.0 517 0.4083 0.874
0.2959 22.98 540 0.4202 0.862
0.2665 24.0 564 0.3740 0.881
0.2765 24.98 587 0.4123 0.866
0.2728 26.0 611 0.3763 0.868
0.2817 26.98 634 0.3939 0.864
0.2467 28.0 658 0.3938 0.87
0.2772 28.98 681 0.4013 0.866
0.2243 29.36 690 0.3478 0.888

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0