AI-generated faces influence gender stereotypes and racial homogenization
Abstract
Text-to-image generative AI models such as Stable Diffusion are used daily by millions worldwide. However, the extent to which these models exhibit racial and gender stereotypes is not yet fully understood. Here, we document significant biases in Stable Diffusion across six races, two genders, 32 professions, and eight attributes. Additionally, we examine the degree to which Stable Diffusion depicts individuals of the same race as being similar to one another. This analysis reveals significant racial homogenization, e.g., depicting nearly all middle eastern men as dark-skinned, bearded, and wearing a traditional headdress. We then propose novel debiasing solutions that address the above stereotypes. Finally, using a preregistered experiment, we show that being presented with inclusive AI-generated faces reduces people's racial and gender biases, while being presented with non-inclusive ones increases such biases. This persists regardless of whether the images are labeled as AI-generated. Taken together, our findings emphasize the need to address biases and stereotypes in AI-generated content.
Models citing this paper 12
Browse 12 models citing this paperDatasets citing this paper 0
No dataset linking this paper
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper