whisper-base-kn / README.md
librarian-bot's picture
Librarian Bot: Add base_model information to model
eabf2ba
|
raw
history blame
2.31 kB
metadata
language:
  - kn
license: apache-2.0
tags:
  - whisper-event
  - generated_from_trainer
metrics:
  - wer
base_model: openai/whisper-small
model-index:
  - name: Whisper Base Kn - Bharat Ramanathan
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: google/fleurs
          type: google/fleurs
          config: kn_in
          split: test
        metrics:
          - type: wer
            value: 32.51
            name: WER

Whisper Base Kn - Bharat Ramanathan

This model is a fine-tuned version of openai/whisper-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1974
  • Wer: 30.8790

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 96
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.572 0.1 500 0.3198 50.3005
0.3153 0.2 1000 0.2464 37.2652
0.2533 0.3 1500 0.2298 36.5515
0.2212 1.04 2000 0.2157 34.5229
0.2013 1.14 2500 0.2090 32.6071
0.1881 1.24 3000 0.2043 32.7198
0.1784 1.34 3500 0.2014 30.8039
0.1715 2.08 4000 0.2014 31.5928
0.166 2.18 4500 0.1991 31.2547
0.1616 2.28 5000 0.1974 30.8790

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.13.0+cu117
  • Datasets 2.7.1.dev0
  • Tokenizers 0.13.2