whisper-tiny-kn / README.md
parambharat's picture
Update metadata with huggingface_hub
e7355ad
metadata
language:
  - kn
license: apache-2.0
tags:
  - whisper-event
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: Whisper Tiny Kn - Bharat Ramanathan
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: google/fleurs
          type: google/fleurs
          config: kn_in
          split: test
        metrics:
          - type: wer
            value: 43.7
            name: WER

Whisper Tiny Kn - Bharat Ramanathan

This model is a fine-tuned version of openai/whisper-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3057
  • Wer: 46.3937

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 150
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 3000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
1.4091 0.1 300 1.4915 101.5026
1.1294 0.2 600 1.2845 94.7408
0.5426 0.3 900 0.4621 64.2374
0.4128 1.02 1200 0.3695 54.6582
0.3629 1.12 1500 0.3414 52.9677
0.3321 1.22 1800 0.3249 50.3005
0.3066 1.32 2100 0.3181 48.9106
0.2958 2.03 2400 0.3136 47.7836
0.2883 2.13 2700 0.3055 46.6191
0.2857 2.23 3000 0.3057 46.3937

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.13.0
  • Datasets 2.7.1.dev0
  • Tokenizers 0.13.2