whisper-tiny-ml / README.md
parambharat's picture
update model card README.md
ec93be8
|
raw
history blame
2.44 kB
metadata
language:
  - ta
license: apache-2.0
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
model-index:
  - name: Whisper Tiny ml - Bharat Ramanathan
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 11.0
          type: mozilla-foundation/common_voice_11_0
          config: null
          split: None
        metrics:
          - name: Wer
            type: wer
            value: 58.75912408759124

Whisper Tiny ml - Bharat Ramanathan

This model is a fine-tuned version of openai/whisper-tiny on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2636
  • Wer: 58.7591

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.5755 4.02 500 0.4241 81.2652
0.4182 9.01 1000 0.3245 72.7494
0.3387 14.01 1500 0.2914 67.2749
0.2923 19.0 2000 0.2745 60.3406
0.2596 24.0 2500 0.2645 58.2725
0.2356 28.02 3000 0.2629 60.3406
0.2167 33.01 3500 0.2647 59.9757
0.2039 4.02 4000 0.2617 58.2725
0.1938 9.01 4500 0.2644 58.2725
0.1858 14.01 5000 0.2636 58.7591

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.13.0
  • Datasets 2.7.1.dev0
  • Tokenizers 0.13.2