whisper-tiny-ml / README.md
parambharat's picture
Update metadata with huggingface_hub
f7ff6e7
|
raw
history blame
2.64 kB
metadata
language:
  - ml
license: apache-2.0
tags:
  - whisper-event
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: Whisper Tiny ml - Bharat Ramanathan
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: mozilla-foundation/common_voice_11_0
          type: mozilla-foundation/common_voice_11_0
          config: ml
          split: test
        metrics:
          - type: wer
            value: 45.72
            name: WER
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: google/fleurs
          type: google/fleurs
          config: ml_in
          split: test
        metrics:
          - type: wer
            value: 62.15
            name: WER

Whisper Tiny ml - Bharat Ramanathan

This model is a fine-tuned version of openai/whisper-tiny on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1286
  • Wer: 106.9296

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.5755 4.02 500 0.4241 81.2652
0.4182 9.01 1000 0.3245 72.7494
0.3387 14.01 1500 0.2914 67.2749
0.2923 19.0 2000 0.2745 60.3406
0.2596 24.0 2500 0.2645 58.2725
0.2356 28.02 3000 0.2629 60.3406
0.2167 33.01 3500 0.2647 59.9757
0.2039 4.02 4000 0.2617 58.2725
0.1938 9.01 4500 0.2644 58.2725
0.1858 14.01 5000 0.2636 58.7591

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.13.0
  • Datasets 2.7.1.dev0
  • Tokenizers 0.13.2