Edit model card

layoutlmv3-invoice

This model is a fine-tuned version of microsoft/layoutlmv3-base on the layoutlmv3 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1889
  • Precision: 0.9698
  • Recall: 0.9592
  • F1: 0.9645
  • Accuracy: 0.9708

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 3500

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 5.32 250 0.3826 0.9471 0.9278 0.9374 0.9465
0.8433 10.64 500 0.1720 0.9697 0.9560 0.9628 0.9684
0.8433 15.96 750 0.1631 0.9714 0.9608 0.9661 0.9684
0.0347 21.28 1000 0.1548 0.9746 0.9639 0.9692 0.9733
0.0347 26.6 1250 0.1700 0.9698 0.9576 0.9637 0.9672
0.0116 31.91 1500 0.1812 0.9667 0.9576 0.9621 0.9648
0.0116 37.23 1750 0.1513 0.9683 0.9592 0.9637 0.9721
0.0066 42.55 2000 0.1555 0.9730 0.9623 0.9676 0.9757
0.0066 47.87 2250 0.1729 0.9714 0.9592 0.9652 0.9708
0.0048 53.19 2500 0.1854 0.9761 0.9623 0.9692 0.9721
0.0048 58.51 2750 0.1863 0.9714 0.9592 0.9652 0.9696
0.0037 63.83 3000 0.1813 0.9761 0.9623 0.9692 0.9733
0.0037 69.15 3250 0.1903 0.9698 0.9592 0.9645 0.9708
0.0034 74.47 3500 0.1889 0.9698 0.9592 0.9645 0.9708

Framework versions

  • Transformers 4.36.0.dev0
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
3
Safetensors
Model size
126M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for parandhamudu/layoutlmv3-invoice

Finetuned
(212)
this model

Evaluation results