Pooya-Fallah's picture
Update README.md
a9fea43 verified
metadata
license: apache-2.0
base_model: HooshvareLab/bert-fa-zwnj-base
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: ParsBERT-nli-FarsTail-FarSick
    results: []

ParsBERT-nli-FarsTail-FarSick

This model is a fine-tuned version of HooshvareLab/bert-fa-zwnj-base on the FarsTail and FarSick datasets. It achieves the following results on the evaluation set:

  • Loss: 0.8730
  • Accuracy: 0.8055
  • Precision (macro): 0.7900
  • Precision (micro): 0.8055
  • Recall (macro): 0.7926
  • Recall (micro): 0.7926
  • F1 (macro): 0.7909
  • F1 (micro): 0.8055

How to use

import torch
import transformers

model_name_or_path = "parsi-ai-nlpclass/ParsBERT-nli-FarsTail-FarSick"
config = transformers.AutoConfig.from_pretrained(model_name_or_path)
tokenizer_pb = transformers.AutoTokenizer.from_pretrained(model_name_or_path)
model_pb = transformers.AutoModelForSequenceClassification.from_pretrained(model_name_or_path,
                                                                           num_labels=3)
premise = "سلام خوبی؟"
hypothesis = "آره خوبم"
print(model_pb(**tokenizer_pb(premise, hypothesis, return_tensors='pt')))

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision (macro) Precision (micro) Recall (macro) Recall (micro) F1 (macro) F1 (micro)
0.6248 1.0 1137 0.5391 0.7768 0.7677 0.7768 0.7728 0.7728 0.7647 0.7768
0.4449 2.0 2274 0.5017 0.8055 0.7909 0.8055 0.7963 0.7963 0.7932 0.8055
0.304 3.0 3411 0.5851 0.8125 0.8006 0.8125 0.7979 0.7979 0.7985 0.8125
0.1844 4.0 4548 0.7549 0.8140 0.8010 0.8140 0.7982 0.7982 0.7993 0.8140
0.1224 5.0 5685 0.8730 0.8055 0.7900 0.8055 0.7926 0.7926 0.7909 0.8055

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.17.1
  • Tokenizers 0.15.2