Edit model card

distilhubert-timit

This model is a fine-tuned version of ntu-spml/distilhubert on the TIMIT_ASR - NA dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3601
  • Wer: 0.6776

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 20.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
5.4447 0.69 100 4.9546 1.0
2.9499 1.38 200 2.9519 1.0
2.8989 2.07 300 2.8624 1.0
2.2076 2.76 400 2.1089 1.0008
1.4186 3.45 500 1.4112 0.9165
0.9951 4.14 600 1.1378 0.7701
0.9754 4.83 700 1.0152 0.7274
0.9364 5.52 800 0.9619 0.7011
0.6557 6.21 900 0.9144 0.6868
0.5681 6.9 1000 0.8899 0.6683
0.66 7.59 1100 0.8992 0.6654
0.6144 8.28 1200 0.9299 0.6898
0.4099 8.97 1300 0.9510 0.6674
0.3384 9.66 1400 0.9598 0.6612
0.3163 10.34 1500 0.9954 0.6612
0.4204 11.03 1600 1.0164 0.6607
0.1932 11.72 1700 1.0637 0.6658
0.1449 12.41 1800 1.1190 0.6652
0.1803 13.1 1900 1.1260 0.6689
0.328 13.79 2000 1.2186 0.6751
0.0838 14.48 2100 1.2591 0.6909
0.0766 15.17 2200 1.2529 0.6780
0.0956 15.86 2300 1.2537 0.6668
0.2339 16.55 2400 1.3210 0.6797
0.0431 17.24 2500 1.3241 0.6781
0.0508 17.93 2600 1.3184 0.6683
0.0616 18.62 2700 1.3728 0.6889
0.1608 19.31 2800 1.3572 0.6771
0.0378 20.0 2900 1.3601 0.6776

Framework versions

  • Transformers 4.12.0.dev0
  • Pytorch 1.8.1
  • Datasets 1.14.1.dev0
  • Tokenizers 0.10.3
Downloads last month
28
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train patrickvonplaten/distilhubert-timit