Edit model card

sew-d-mid-400k-librispeech-clean-100h-ft

This model is a fine-tuned version of asapp/sew-d-mid-400k on the LIBRISPEECH_ASR - CLEAN dataset. It achieves the following results on the evaluation set:

  • Loss: 2.3540
  • Wer: 1.0536

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • total_train_batch_size: 32
  • total_eval_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 3.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
7.319 0.11 100 11.0572 1.0
3.6726 0.22 200 4.2003 1.0
2.981 0.34 300 3.5742 0.9919
2.9411 0.45 400 3.2599 1.0
2.903 0.56 500 2.9350 1.0
2.8597 0.67 600 2.9514 1.0
2.7771 0.78 700 2.8521 1.0
2.7926 0.9 800 2.7821 1.0120
2.6623 1.01 900 2.7027 0.9924
2.5893 1.12 1000 2.6667 1.0240
2.5733 1.23 1100 2.6341 1.0368
2.5455 1.35 1200 2.5928 1.0411
2.4919 1.46 1300 2.5695 1.0817
2.5182 1.57 1400 2.5559 1.1072
2.4766 1.68 1500 2.5229 1.1257
2.4267 1.79 1600 2.4991 1.1151
2.3919 1.91 1700 2.4768 1.1139
2.3883 2.02 1800 2.4452 1.0636
2.3737 2.13 1900 2.4304 1.0594
2.3569 2.24 2000 2.4095 1.0539
2.3641 2.35 2100 2.3997 1.0511
2.3281 2.47 2200 2.3856 1.0414
2.2912 2.58 2300 2.3750 1.0696
2.3028 2.69 2400 2.3684 1.0436
2.2906 2.8 2500 2.3613 1.0538
2.2822 2.91 2600 2.3558 1.0506

Framework versions

  • Transformers 4.12.0.dev0
  • Pytorch 1.9.0+cu111
  • Datasets 1.13.4.dev0
  • Tokenizers 0.10.3
Downloads last month
16
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.