Hugo-7B-slerp
Hugo-7B-slerp is a successful merge of the following models using mergekit:
𧩠Configuration
slices:
- sources:
- model: mistralai/Mistral-7B-Instruct-v0.2
layer_range: [0, 32]
- model: beowolx/CodeNinja-1.0-OpenChat-7B
layer_range: [0, 32]
merge_method: slerp
base_model: mistralai/Mistral-7B-Instruct-v0.2
parameters:
t:
- filter: self_attn
value: [0, 0.5, 0.3, 0.7, 1]
- filter: mlp
value: [1, 0.5, 0.7, 0.3, 0]
- value: 0.5
dtype: bfloat16
π Performance
Model | Average | ARC | HellaSwag | MMLU | TruthfulQA | Winogrande | GSM8K |
---|---|---|---|---|---|---|---|
paulilioaica/Hugo-7B-slerp | 67.07 | 64.51 | 84.77 | 62.54 | 57.13 | 80.03 | 53.45 |
mistralai/Mistral-7B-Instruct-v0.2 | 65.71 | 63.14 | 84.88 | 60.78 | 68.26 | 77.19 | 40.03 |
beowolx/CodeNinja-1.0-OpenChat-7B | 67.4 | 63.48 | 83.65 | 63.77 | 47.16 | 79.79 | 66.57 |
With bold one can see the benchmarks where this merge overtakes the basemodel in performance.
π» Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "paulilioaica/Hugo-7B-slerp"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
"conversational",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(messages, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs)
π More on megekit
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 67.07 |
AI2 Reasoning Challenge (25-Shot) | 64.51 |
HellaSwag (10-Shot) | 84.77 |
MMLU (5-Shot) | 62.54 |
TruthfulQA (0-shot) | 57.13 |
Winogrande (5-shot) | 80.03 |
GSM8k (5-shot) | 53.45 |
- Downloads last month
- 66
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for paulilioaica/Hugo-7B-slerp
Merge model
this model
Evaluation results
- normalized accuracy on AI2 Reasoning Challenge (25-Shot)test set Open LLM Leaderboard64.510
- normalized accuracy on HellaSwag (10-Shot)validation set Open LLM Leaderboard84.770
- accuracy on MMLU (5-Shot)test set Open LLM Leaderboard62.540
- mc2 on TruthfulQA (0-shot)validation set Open LLM Leaderboard57.130
- accuracy on Winogrande (5-shot)validation set Open LLM Leaderboard80.030
- accuracy on GSM8k (5-shot)test set Open LLM Leaderboard53.450