Edit model card

finetuned-Accident-MultipleLabels-Video-subset-v2-checkpointing

This model is a fine-tuned version of MCG-NJU/videomae-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.7371
  • Accuracy: 0.3704

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 35

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 0.06 2 1.7265 0.3594
No log 1.06 4 1.6976 0.3906
No log 2.06 6 1.7503 0.3594
No log 3.06 8 1.8831 0.3125
1.7254 4.06 10 2.0285 0.1719
1.7254 5.06 12 2.0391 0.2812
1.7254 6.06 14 1.9737 0.3281
1.7254 7.06 16 1.8998 0.375
1.7254 8.06 18 1.8786 0.375
1.394 9.06 20 1.9054 0.3438
1.394 10.06 22 1.9474 0.3281
1.394 11.06 24 2.0032 0.3281
1.394 12.06 26 2.0729 0.3281
1.394 13.06 28 2.1081 0.3438
1.285 14.06 30 2.1190 0.3281
1.285 15.06 32 2.1188 0.3438
1.285 16.06 34 2.1155 0.3594
1.285 17.03 35 2.1163 0.3594

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.1.0
  • Datasets 2.14.6
  • Tokenizers 0.14.1
Downloads last month
29
Safetensors
Model size
86.2M params
Tensor type
F32
·
Inference API
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for pavitemple/finetuned-Accident-MultipleLabels-Video-subset-v2-checkpointing

Finetuned
(411)
this model