herbert-base-ner

Model description

herbert-base-ner is a fine-tuned HerBERT model that can be used for Named Entity Recognition . It has been trained to recognize three types of entities: person (PER), location (LOC) and organization (ORG).

Specifically, this model is an allegro/herbert-base-cased model that was fine-tuned on the Polish subset of wikiann dataset.

How to use

You can use this model with Transformers pipeline for NER.

from transformers import AutoTokenizer, AutoModelForTokenClassification
from transformers import pipeline

model_checkpoint = "pczarnik/herbert-base-ner"
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
model = AutoModelForTokenClassification.from_pretrained(model_checkpoint)

nlp = pipeline("ner", model=model, tokenizer=tokenizer)
example = "Nazywam się Grzegorz Brzęszczyszczykiewicz, pochodzę "\
    "z Chrząszczyżewoszczyc, pracuję w Łękołodzkim Urzędzie Powiatowym"

ner_results = nlp(example)
print(ner_results)
[{'entity': 'B-PER', 'score': 0.99451494, 'index': 4, 'word': 'Grzegorz</w>', 'start': 12, 'end': 20},
 {'entity': 'I-PER', 'score': 0.99758506, 'index': 5, 'word': 'B', 'start': 21, 'end': 22},
 {'entity': 'I-PER', 'score': 0.99749386, 'index': 6, 'word': 'rzę', 'start': 22, 'end': 25},
 {'entity': 'I-PER', 'score': 0.9973041, 'index': 7, 'word': 'szczy', 'start': 25, 'end': 30},
 {'entity': 'I-PER', 'score': 0.99682057, 'index': 8, 'word': 'szczy', 'start': 30, 'end': 35},
 {'entity': 'I-PER', 'score': 0.9964832, 'index': 9, 'word': 'kiewicz</w>', 'start': 35, 'end': 42},
 {'entity': 'B-LOC', 'score': 0.99427444, 'index': 14, 'word': 'Chrzą', 'start': 55, 'end': 60},
 {'entity': 'I-LOC', 'score': 0.99143463, 'index': 15, 'word': 'szczy', 'start': 60, 'end': 65},
 {'entity': 'I-LOC', 'score': 0.9922201, 'index': 16, 'word': 'że', 'start': 65, 'end': 67},
 {'entity': 'I-LOC', 'score': 0.9918464, 'index': 17, 'word': 'wo', 'start': 67, 'end': 69},
 {'entity': 'I-LOC', 'score': 0.9900766, 'index': 18, 'word': 'szczy', 'start': 69, 'end': 74},
 {'entity': 'I-LOC', 'score': 0.98823845, 'index': 19, 'word': 'c</w>', 'start': 74, 'end': 75},
 {'entity': 'B-ORG', 'score': 0.6808262, 'index': 23, 'word': 'Łę', 'start': 87, 'end': 89},
 {'entity': 'I-ORG', 'score': 0.7763973, 'index': 24, 'word': 'ko', 'start': 89, 'end': 91},
 {'entity': 'I-ORG', 'score': 0.77731717, 'index': 25, 'word': 'ło', 'start': 91, 'end': 93},
 {'entity': 'I-ORG', 'score': 0.9108255, 'index': 26, 'word': 'dzkim</w>', 'start': 93, 'end': 98},
 {'entity': 'I-ORG', 'score': 0.98050755, 'index': 27, 'word': 'Urzędzie</w>', 'start': 99, 'end': 107},
 {'entity': 'I-ORG', 'score': 0.9789752, 'index': 28, 'word': 'Powiatowym</w>', 'start': 108, 'end': 118}]

BibTeX entry and citation info

@inproceedings{mroczkowski-etal-2021-herbert,
    title = "{H}er{BERT}: Efficiently Pretrained Transformer-based Language Model for {P}olish",
    author = "Mroczkowski, Robert  and
      Rybak, Piotr  and
      Wr{\\'o}blewska, Alina  and
      Gawlik, Ireneusz",
    booktitle = "Proceedings of the 8th Workshop on Balto-Slavic Natural Language Processing",
    month = apr,
    year = "2021",
    address = "Kiyv, Ukraine",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/2021.bsnlp-1.1",
    pages = "1--10",
}
@inproceedings{pan-etal-2017-cross,
    title = "Cross-lingual Name Tagging and Linking for 282 Languages",
    author = "Pan, Xiaoman  and
      Zhang, Boliang  and
      May, Jonathan  and
      Nothman, Joel  and
      Knight, Kevin  and
      Ji, Heng",
    booktitle = "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
    month = jul,
    year = "2017",
    address = "Vancouver, Canada",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/P17-1178",
    doi = "10.18653/v1/P17-1178",
    pages = "1946--1958",
}
Downloads last month
610
Safetensors
Model size
124M params
Tensor type
I64
·
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Dataset used to train pczarnik/herbert-base-ner

Evaluation results