herbert-base-ner
Model description
herbert-base-ner is a fine-tuned HerBERT model that can be used for Named Entity Recognition . It has been trained to recognize three types of entities: person (PER), location (LOC) and organization (ORG).
Specifically, this model is an allegro/herbert-base-cased model that was fine-tuned on the Polish subset of wikiann dataset.
How to use
You can use this model with Transformers pipeline for NER.
from transformers import AutoTokenizer, AutoModelForTokenClassification
from transformers import pipeline
model_checkpoint = "pczarnik/herbert-base-ner"
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
model = AutoModelForTokenClassification.from_pretrained(model_checkpoint)
nlp = pipeline("ner", model=model, tokenizer=tokenizer)
example = "Nazywam się Grzegorz Brzęszczyszczykiewicz, pochodzę "\
"z Chrząszczyżewoszczyc, pracuję w Łękołodzkim Urzędzie Powiatowym"
ner_results = nlp(example)
print(ner_results)
[{'entity': 'B-PER', 'score': 0.99451494, 'index': 4, 'word': 'Grzegorz</w>', 'start': 12, 'end': 20},
{'entity': 'I-PER', 'score': 0.99758506, 'index': 5, 'word': 'B', 'start': 21, 'end': 22},
{'entity': 'I-PER', 'score': 0.99749386, 'index': 6, 'word': 'rzę', 'start': 22, 'end': 25},
{'entity': 'I-PER', 'score': 0.9973041, 'index': 7, 'word': 'szczy', 'start': 25, 'end': 30},
{'entity': 'I-PER', 'score': 0.99682057, 'index': 8, 'word': 'szczy', 'start': 30, 'end': 35},
{'entity': 'I-PER', 'score': 0.9964832, 'index': 9, 'word': 'kiewicz</w>', 'start': 35, 'end': 42},
{'entity': 'B-LOC', 'score': 0.99427444, 'index': 14, 'word': 'Chrzą', 'start': 55, 'end': 60},
{'entity': 'I-LOC', 'score': 0.99143463, 'index': 15, 'word': 'szczy', 'start': 60, 'end': 65},
{'entity': 'I-LOC', 'score': 0.9922201, 'index': 16, 'word': 'że', 'start': 65, 'end': 67},
{'entity': 'I-LOC', 'score': 0.9918464, 'index': 17, 'word': 'wo', 'start': 67, 'end': 69},
{'entity': 'I-LOC', 'score': 0.9900766, 'index': 18, 'word': 'szczy', 'start': 69, 'end': 74},
{'entity': 'I-LOC', 'score': 0.98823845, 'index': 19, 'word': 'c</w>', 'start': 74, 'end': 75},
{'entity': 'B-ORG', 'score': 0.6808262, 'index': 23, 'word': 'Łę', 'start': 87, 'end': 89},
{'entity': 'I-ORG', 'score': 0.7763973, 'index': 24, 'word': 'ko', 'start': 89, 'end': 91},
{'entity': 'I-ORG', 'score': 0.77731717, 'index': 25, 'word': 'ło', 'start': 91, 'end': 93},
{'entity': 'I-ORG', 'score': 0.9108255, 'index': 26, 'word': 'dzkim</w>', 'start': 93, 'end': 98},
{'entity': 'I-ORG', 'score': 0.98050755, 'index': 27, 'word': 'Urzędzie</w>', 'start': 99, 'end': 107},
{'entity': 'I-ORG', 'score': 0.9789752, 'index': 28, 'word': 'Powiatowym</w>', 'start': 108, 'end': 118}]
BibTeX entry and citation info
@inproceedings{mroczkowski-etal-2021-herbert,
title = "{H}er{BERT}: Efficiently Pretrained Transformer-based Language Model for {P}olish",
author = "Mroczkowski, Robert and
Rybak, Piotr and
Wr{\\'o}blewska, Alina and
Gawlik, Ireneusz",
booktitle = "Proceedings of the 8th Workshop on Balto-Slavic Natural Language Processing",
month = apr,
year = "2021",
address = "Kiyv, Ukraine",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2021.bsnlp-1.1",
pages = "1--10",
}
@inproceedings{pan-etal-2017-cross,
title = "Cross-lingual Name Tagging and Linking for 282 Languages",
author = "Pan, Xiaoman and
Zhang, Boliang and
May, Jonathan and
Nothman, Joel and
Knight, Kevin and
Ji, Heng",
booktitle = "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = jul,
year = "2017",
address = "Vancouver, Canada",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/P17-1178",
doi = "10.18653/v1/P17-1178",
pages = "1946--1958",
}
- Downloads last month
- 610
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Dataset used to train pczarnik/herbert-base-ner
Evaluation results
- Precision on wikianntest set self-reported0.886
- Recall on wikianntest set self-reported0.907
- F1 on wikianntest set self-reported0.896
- Accuracy on wikianntest set self-reported0.958