pietruszkowiec commited on
Commit
93864f6
1 Parent(s): 5804d70

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +14 -9
README.md CHANGED
@@ -21,12 +21,12 @@ It has been trained to recognize three types of entities: person (PER), location
21
 
22
  Specifically, this model is an [*allegro/herbert-base-cased*](https://huggingface.co/allegro/herbert-base-cased) model that was fine-tuned on the Polish subset of *wikiann* dataset.
23
 
24
- It achieves the following results on the evaluation set:
25
- - Loss: 0.2006
26
- - Precision: 0.8886
27
- - Recall: 0.9059
28
- - F1: 0.8972
29
- - Accuracy: 0.9569
30
 
31
 
32
  ## Intended uses & limitations
@@ -38,10 +38,15 @@ You can use this model with Transformers *pipeline* for NER.
38
  ```python
39
  from transformers import AutoTokenizer, AutoModelForTokenClassification
40
  from transformers import pipeline
41
- tokenizer = AutoTokenizer.from_pretrained("pietruszkowiec/herbert-base-ner")
42
- model = AutoModelForTokenClassification.from_pretrained("pietruszkowiec/herbert-base-ner")
 
 
 
43
  nlp = pipeline("ner", model=model, tokenizer=tokenizer)
44
- example = "Nazywam się Grzegorz Brzęszczyszczykiewicz, pochodzę z Chrząszczyżewoszczyc, pracuję w Łękołodzkim Urzędzie Powiatowym"
 
 
45
  ner_results = nlp(example)
46
  print(ner_results)
47
  ```
 
21
 
22
  Specifically, this model is an [*allegro/herbert-base-cased*](https://huggingface.co/allegro/herbert-base-cased) model that was fine-tuned on the Polish subset of *wikiann* dataset.
23
 
24
+ It achieves the following results on the test subset of *wikitest/pl* set:
25
+ - Loss: 0.1937
26
+ - Precision: 0.8857
27
+ - Recall: 0.9070
28
+ - F1: 0.8962
29
+ - Accuracy: 0.9581
30
 
31
 
32
  ## Intended uses & limitations
 
38
  ```python
39
  from transformers import AutoTokenizer, AutoModelForTokenClassification
40
  from transformers import pipeline
41
+
42
+ model_checkpoint = "pietruszkowiec/herbert-base-ner"
43
+ tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
44
+ model = AutoModelForTokenClassification.from_pretrained(model_checkpoint)
45
+
46
  nlp = pipeline("ner", model=model, tokenizer=tokenizer)
47
+ example = "Nazywam się Grzegorz Brzęszczyszczykiewicz, pochodzę "\
48
+ "z Chrząszczyżewoszczyc, pracuję w Łękołodzkim Urzędzie Powiatowym"
49
+
50
  ner_results = nlp(example)
51
  print(ner_results)
52
  ```