pengold's picture
Update README.md
65525bb
|
raw
history blame
6.55 kB
metadata
license: cc-by-4.0
base_model: distilbert-base-cased
language:
  - vi
tags:
  - generated_from_trainer
model-index:
  - name: distilbert-base-vietnamese-case
    results: []
widget:
  - text: Đà Nẵng  một thành [MASK]
    example_title: Example 1
  - text: 'Chí Phèo là một nhân [MASK] hư cấu '
    example_title: Example 2

distilbert-base-vietnamese-case

This model is a fine-tuned version of distilbert-base-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 3.9239

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss
6.1273 1.0 79 6.0333
5.9095 2.0 158 5.9172
5.8407 3.0 237 5.7789
5.7761 4.0 316 5.6779
5.6909 5.0 395 5.6731
5.6318 6.0 474 5.5712
5.5787 7.0 553 5.4994
5.4948 8.0 632 5.4146
5.4399 9.0 711 5.3760
5.3676 10.0 790 5.3624
5.3691 11.0 869 5.2900
5.2904 12.0 948 5.3213
5.228 13.0 1027 5.2162
5.2384 14.0 1106 5.2232
5.1101 15.0 1185 5.1858
5.1316 16.0 1264 4.9780
5.0517 17.0 1343 5.0227
5.0014 18.0 1422 4.9703
5.0012 19.0 1501 4.9751
4.9574 20.0 1580 4.9152
4.8492 21.0 1659 4.8699
4.8717 22.0 1738 4.8291
4.8014 23.0 1817 4.8247
4.7941 24.0 1896 4.7314
4.7218 25.0 1975 4.8128
4.6991 26.0 2054 4.7312
4.695 27.0 2133 4.6820
4.6339 28.0 2212 4.6659
4.5968 29.0 2291 4.6682
4.581 30.0 2370 4.5671
4.5606 31.0 2449 4.5874
4.4842 32.0 2528 4.4972
4.5101 33.0 2607 4.5457
4.4482 34.0 2686 4.4926
4.4563 35.0 2765 4.4372
4.4161 36.0 2844 4.3623
4.3537 37.0 2923 4.4122
4.3775 38.0 3002 4.3519
4.3519 39.0 3081 4.3866
4.3392 40.0 3160 4.3779
4.3011 41.0 3239 4.3855
4.2702 42.0 3318 4.2953
4.2614 43.0 3397 4.3726
4.2464 44.0 3476 4.3147
4.1984 45.0 3555 4.2556
4.2463 46.0 3634 4.2224
4.1559 47.0 3713 4.1839
4.1859 48.0 3792 4.2830
4.1063 49.0 3871 4.1803
4.1222 50.0 3950 4.1545
4.1423 51.0 4029 4.2308
4.0657 52.0 4108 4.1227
4.1018 53.0 4187 4.1687
4.0689 54.0 4266 4.1626
4.0676 55.0 4345 4.1790
4.0127 56.0 4424 4.0618
4.066 57.0 4503 4.0780
3.9994 58.0 4582 4.1382
4.0002 59.0 4661 4.0318
4.0064 60.0 4740 4.0891
3.9681 61.0 4819 4.0633
3.9608 62.0 4898 4.0223
3.9544 63.0 4977 4.0722
3.97 64.0 5056 4.0127
3.913 65.0 5135 3.9915
3.9177 66.0 5214 4.0256
3.9388 67.0 5293 3.9830
3.9429 68.0 5372 4.0162
3.9036 69.0 5451 4.0515
3.8851 70.0 5530 3.9716
3.8894 71.0 5609 3.9939
3.896 72.0 5688 3.9699
3.8893 73.0 5767 3.9772
3.8648 74.0 5846 4.0543
3.8511 75.0 5925 3.9879
3.8286 76.0 6004 3.9393
3.851 77.0 6083 4.0088
3.8407 78.0 6162 3.9580
3.8391 79.0 6241 3.9453
3.8537 80.0 6320 3.9377
3.823 81.0 6399 3.9423
3.8395 82.0 6478 3.9240
3.7859 83.0 6557 3.8921
3.8177 84.0 6636 3.9167
3.7862 85.0 6715 3.9479
3.7978 86.0 6794 3.9230
3.7939 87.0 6873 3.9401
3.8006 88.0 6952 3.9525
3.7697 89.0 7031 3.9304
3.7914 90.0 7110 3.8875
3.7799 91.0 7189 3.8851
3.812 92.0 7268 3.9349
3.7942 93.0 7347 3.8931
3.7671 94.0 7426 3.8653
3.7654 95.0 7505 3.8282
3.7648 96.0 7584 3.8408
3.8011 97.0 7663 3.8898
3.7781 98.0 7742 3.9560
3.8056 99.0 7821 3.8882
3.7749 100.0 7900 3.9239

Framework versions

  • Transformers 4.33.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3