t5-vietnamese-summarization
This model is a fine-tuned version of pengold/t5-vietnamese-summarization on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 4.6288
- Rouge1: 0.4728
- Rouge2: 0.1669
- Rougel: 0.3049
- Rougelsum: 0.3049
- Gen Len: 18.7458
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 70
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
---|---|---|---|---|---|---|---|---|
5.2487 | 1.0 | 2007 | 5.0028 | 0.4671 | 0.1595 | 0.2994 | 0.2994 | 18.7618 |
5.217 | 2.0 | 4014 | 4.9802 | 0.4639 | 0.1569 | 0.2984 | 0.2983 | 18.7747 |
5.2191 | 3.0 | 6021 | 4.9685 | 0.4644 | 0.1594 | 0.2989 | 0.2989 | 18.7613 |
5.2254 | 4.0 | 8028 | 4.9477 | 0.4648 | 0.1586 | 0.2988 | 0.2987 | 18.7458 |
5.1735 | 5.0 | 10035 | 4.9366 | 0.4654 | 0.1593 | 0.2988 | 0.2987 | 18.761 |
5.1735 | 6.0 | 12042 | 4.9214 | 0.4676 | 0.1611 | 0.3004 | 0.3004 | 18.78 |
5.1653 | 7.0 | 14049 | 4.9095 | 0.4681 | 0.1616 | 0.3007 | 0.3007 | 18.7523 |
5.1154 | 8.0 | 16056 | 4.8971 | 0.4664 | 0.1598 | 0.3002 | 0.3001 | 18.7655 |
5.1232 | 9.0 | 18063 | 4.8882 | 0.4683 | 0.1612 | 0.3008 | 0.3008 | 18.761 |
5.0995 | 10.0 | 20070 | 4.8758 | 0.4709 | 0.1618 | 0.3021 | 0.302 | 18.7518 |
5.1012 | 11.0 | 22077 | 4.8689 | 0.4685 | 0.1616 | 0.3011 | 0.3009 | 18.7665 |
5.0916 | 12.0 | 24084 | 4.8486 | 0.4695 | 0.1623 | 0.3024 | 0.3023 | 18.7655 |
5.0559 | 13.0 | 26091 | 4.8409 | 0.4699 | 0.1631 | 0.3024 | 0.3023 | 18.7849 |
5.0633 | 14.0 | 28098 | 4.8326 | 0.4705 | 0.1613 | 0.302 | 0.302 | 18.7583 |
5.0335 | 15.0 | 30105 | 4.8243 | 0.4696 | 0.1612 | 0.3023 | 0.3022 | 18.7638 |
5.0271 | 16.0 | 32112 | 4.8046 | 0.4691 | 0.1618 | 0.3022 | 0.3022 | 18.7518 |
5.0045 | 17.0 | 34119 | 4.8060 | 0.4708 | 0.1629 | 0.3029 | 0.3028 | 18.7568 |
5.0072 | 18.0 | 36126 | 4.7945 | 0.4702 | 0.1633 | 0.3024 | 0.3023 | 18.776 |
4.9954 | 19.0 | 38133 | 4.7894 | 0.47 | 0.1639 | 0.3022 | 0.3021 | 18.7785 |
4.9994 | 20.0 | 40140 | 4.7773 | 0.4692 | 0.1625 | 0.3028 | 0.3027 | 18.7623 |
4.953 | 21.0 | 42147 | 4.7641 | 0.4682 | 0.162 | 0.3015 | 0.3014 | 18.757 |
4.9526 | 22.0 | 44154 | 4.7600 | 0.4703 | 0.1626 | 0.3023 | 0.3023 | 18.7625 |
4.9571 | 23.0 | 46161 | 4.7592 | 0.4698 | 0.1627 | 0.3025 | 0.3025 | 18.781 |
4.9324 | 24.0 | 48168 | 4.7511 | 0.4697 | 0.1631 | 0.3022 | 0.3021 | 18.769 |
4.9323 | 25.0 | 50175 | 4.7433 | 0.4723 | 0.1649 | 0.304 | 0.3039 | 18.7757 |
4.9381 | 26.0 | 52182 | 4.7378 | 0.4703 | 0.1629 | 0.3026 | 0.3026 | 18.7782 |
4.9288 | 27.0 | 54189 | 4.7454 | 0.4709 | 0.1627 | 0.3026 | 0.3026 | 18.7777 |
4.9131 | 28.0 | 56196 | 4.7222 | 0.471 | 0.1652 | 0.3037 | 0.3037 | 18.782 |
4.9005 | 29.0 | 58203 | 4.7241 | 0.4719 | 0.1638 | 0.3039 | 0.3038 | 18.778 |
4.9051 | 30.0 | 60210 | 4.7225 | 0.4715 | 0.1647 | 0.3037 | 0.3036 | 18.7668 |
4.8816 | 31.0 | 62217 | 4.7181 | 0.4701 | 0.1631 | 0.3029 | 0.3029 | 18.7416 |
4.8687 | 32.0 | 64224 | 4.7061 | 0.4705 | 0.1643 | 0.3032 | 0.3031 | 18.7625 |
4.8935 | 33.0 | 66231 | 4.7063 | 0.4697 | 0.1632 | 0.3028 | 0.3028 | 18.7458 |
4.88 | 34.0 | 68238 | 4.6984 | 0.471 | 0.164 | 0.3039 | 0.3039 | 18.7663 |
4.8473 | 35.0 | 70245 | 4.6934 | 0.4699 | 0.1636 | 0.3034 | 0.3033 | 18.7531 |
4.8613 | 36.0 | 72252 | 4.6863 | 0.4705 | 0.1631 | 0.303 | 0.303 | 18.7797 |
4.8491 | 37.0 | 74259 | 4.6847 | 0.4703 | 0.1638 | 0.3037 | 0.3037 | 18.78 |
4.8239 | 38.0 | 76266 | 4.6804 | 0.4707 | 0.1632 | 0.3032 | 0.3032 | 18.7802 |
4.8767 | 39.0 | 78273 | 4.6788 | 0.4703 | 0.1637 | 0.3027 | 0.3026 | 18.7446 |
4.8402 | 40.0 | 80280 | 4.6700 | 0.4699 | 0.1633 | 0.3028 | 0.3028 | 18.7516 |
4.8261 | 41.0 | 82287 | 4.6660 | 0.4699 | 0.1633 | 0.3029 | 0.3028 | 18.7369 |
4.8193 | 42.0 | 84294 | 4.6693 | 0.4711 | 0.1654 | 0.3039 | 0.3038 | 18.7421 |
4.8161 | 43.0 | 86301 | 4.6636 | 0.4707 | 0.1642 | 0.303 | 0.303 | 18.7595 |
4.832 | 44.0 | 88308 | 4.6619 | 0.4708 | 0.1646 | 0.3036 | 0.3035 | 18.7423 |
4.8304 | 45.0 | 90315 | 4.6575 | 0.4711 | 0.1651 | 0.3038 | 0.3037 | 18.7354 |
4.7958 | 46.0 | 92322 | 4.6543 | 0.4711 | 0.165 | 0.3032 | 0.3032 | 18.7189 |
4.804 | 47.0 | 94329 | 4.6541 | 0.4711 | 0.1656 | 0.3037 | 0.3036 | 18.7396 |
4.7968 | 48.0 | 96336 | 4.6495 | 0.4709 | 0.165 | 0.3034 | 0.3034 | 18.7411 |
4.7912 | 49.0 | 98343 | 4.6471 | 0.4718 | 0.1655 | 0.3041 | 0.3042 | 18.7361 |
4.7721 | 50.0 | 100350 | 4.6469 | 0.4723 | 0.1667 | 0.3047 | 0.3047 | 18.7309 |
4.7828 | 51.0 | 102357 | 4.6476 | 0.4712 | 0.1656 | 0.3044 | 0.3045 | 18.7446 |
4.7934 | 52.0 | 104364 | 4.6453 | 0.4707 | 0.1645 | 0.3035 | 0.3035 | 18.7329 |
4.7724 | 53.0 | 106371 | 4.6425 | 0.4715 | 0.1657 | 0.304 | 0.304 | 18.7403 |
4.7804 | 54.0 | 108378 | 4.6362 | 0.4711 | 0.1658 | 0.3041 | 0.3041 | 18.7488 |
4.792 | 55.0 | 110385 | 4.6363 | 0.4706 | 0.1653 | 0.3038 | 0.3038 | 18.7281 |
4.7528 | 56.0 | 112392 | 4.6357 | 0.4724 | 0.1667 | 0.3044 | 0.3044 | 18.7463 |
4.7849 | 57.0 | 114399 | 4.6346 | 0.472 | 0.1661 | 0.3041 | 0.304 | 18.7431 |
4.7618 | 58.0 | 116406 | 4.6332 | 0.472 | 0.167 | 0.3046 | 0.3046 | 18.7336 |
4.7841 | 59.0 | 118413 | 4.6287 | 0.4716 | 0.1664 | 0.3043 | 0.3043 | 18.7369 |
4.7764 | 60.0 | 120420 | 4.6316 | 0.473 | 0.1666 | 0.3048 | 0.3047 | 18.7548 |
4.7504 | 61.0 | 122427 | 4.6276 | 0.4721 | 0.1671 | 0.3043 | 0.3044 | 18.7371 |
4.7629 | 62.0 | 124434 | 4.6250 | 0.4726 | 0.167 | 0.3046 | 0.3046 | 18.76 |
4.7764 | 63.0 | 126441 | 4.6264 | 0.4725 | 0.1666 | 0.3044 | 0.3044 | 18.7446 |
4.7524 | 64.0 | 128448 | 4.6275 | 0.4719 | 0.166 | 0.3041 | 0.3041 | 18.7428 |
4.7641 | 65.0 | 130455 | 4.6288 | 0.4728 | 0.1669 | 0.3049 | 0.3049 | 18.7458 |
Framework versions
- Transformers 4.33.2
- Pytorch 2.0.1+cu117
- Datasets 2.14.5
- Tokenizers 0.13.3
- Downloads last month
- 955
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for pengold/t5-vietnamese-summarization
Unable to build the model tree, the base model loops to the model itself. Learn more.