|
--- |
|
license: bigcode-openrail-m |
|
base_model: bigcode/starcoderbase-3b |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: outputs |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# outputs |
|
|
|
This model is a fine-tuned version of [bigcode/starcoderbase-3b](https://huggingface.co/bigcode/starcoderbase-3b) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5539 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0005 |
|
- train_batch_size: 24 |
|
- eval_batch_size: 24 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 2 |
|
- training_steps: 1500 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| 0.6249 | 0.07 | 50 | 0.7391 | |
|
| 0.367 | 0.14 | 100 | 0.6978 | |
|
| 0.1705 | 0.21 | 150 | 0.6762 | |
|
| 0.0863 | 0.29 | 200 | 0.6702 | |
|
| 0.4031 | 0.36 | 250 | 0.6393 | |
|
| 0.5025 | 0.43 | 300 | 0.6202 | |
|
| 0.4156 | 0.5 | 350 | 0.6114 | |
|
| 0.3885 | 0.57 | 400 | 0.6040 | |
|
| 0.0186 | 0.64 | 450 | 0.6420 | |
|
| 0.4009 | 0.71 | 500 | 0.6055 | |
|
| 0.3831 | 0.79 | 550 | 0.5867 | |
|
| 0.4876 | 0.86 | 600 | 0.5828 | |
|
| 0.3987 | 0.93 | 650 | 0.5813 | |
|
| 0.2669 | 1.0 | 700 | 0.5810 | |
|
| 0.5006 | 0.75 | 750 | 0.5776 | |
|
| 0.4844 | 1.02 | 800 | 0.5748 | |
|
| 0.3621 | 1.07 | 850 | 0.5747 | |
|
| 0.2021 | 1.12 | 900 | 0.5709 | |
|
| 0.1454 | 1.17 | 950 | 0.5720 | |
|
| 0.5536 | 1.22 | 1000 | 0.5725 | |
|
| 0.1201 | 0.7 | 1050 | 0.5649 | |
|
| 0.3127 | 0.73 | 1100 | 0.5599 | |
|
| 0.3316 | 0.77 | 1150 | 0.5582 | |
|
| 0.2635 | 0.8 | 1200 | 0.5580 | |
|
| 0.5157 | 0.83 | 1250 | 0.5573 | |
|
| 0.395 | 0.87 | 1300 | 0.5554 | |
|
| 0.2694 | 0.9 | 1350 | 0.5543 | |
|
| 0.4236 | 0.93 | 1400 | 0.5543 | |
|
| 0.4869 | 0.97 | 1450 | 0.5541 | |
|
| 0.3642 | 1.0 | 1500 | 0.5539 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.36.0.dev0 |
|
- Pytorch 2.1.0+cu118 |
|
- Datasets 2.15.0 |
|
- Tokenizers 0.15.0 |
|
|