See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: JackFram/llama-160m
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 4d0a2a7788356cae_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/4d0a2a7788356cae_train_data.json
type:
field_input: prompt
field_instruction: user_question
field_output: assistant_answer
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: philip-hightech/2133f7dd-b0e3-45aa-bb1f-61169a9c76ac
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps: 10
micro_batch_size: 2
mlflow_experiment_name: /tmp/4d0a2a7788356cae_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 512
special_tokens:
pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 93ef5447-6df9-4350-96a8-0b70d8401e39
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 93ef5447-6df9-4350-96a8-0b70d8401e39
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
2133f7dd-b0e3-45aa-bb1f-61169a9c76ac
This model is a fine-tuned version of JackFram/llama-160m on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.9239
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 10
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.0997 | 0.0023 | 1 | 1.1192 |
1.1268 | 0.0068 | 3 | 1.1160 |
1.0368 | 0.0135 | 6 | 1.0592 |
1.0121 | 0.0203 | 9 | 0.9239 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 6
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.
Model tree for philip-hightech/2133f7dd-b0e3-45aa-bb1f-61169a9c76ac
Base model
JackFram/llama-160m