|
--- |
|
language: |
|
- en |
|
license: apache-2.0 |
|
library_name: sentence-transformers |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- dataset_size:1K<n<10K |
|
- loss:MatryoshkaLoss |
|
- loss:MultipleNegativesRankingLoss |
|
base_model: BAAI/bge-base-en-v1.5 |
|
metrics: |
|
- cosine_accuracy@1 |
|
- cosine_accuracy@3 |
|
- cosine_accuracy@5 |
|
- cosine_accuracy@10 |
|
- cosine_precision@1 |
|
- cosine_precision@3 |
|
- cosine_precision@5 |
|
- cosine_precision@10 |
|
- cosine_recall@1 |
|
- cosine_recall@3 |
|
- cosine_recall@5 |
|
- cosine_recall@10 |
|
- cosine_ndcg@10 |
|
- cosine_mrr@10 |
|
- cosine_map@100 |
|
widget: |
|
- source_sentence: What begins on page 105 of this report? |
|
sentences: |
|
- What sections are included alongside the Financial Statements in this report? |
|
- How did net revenues change from 2021 to 2022 on a FX-Neutral basis? |
|
- How much did MedTech's sales increase in 2023 compared to 2022? |
|
- source_sentence: When does the Company's fiscal year end? |
|
sentences: |
|
- What was the total store count for the company at the end of fiscal 2022? |
|
- What was the total revenue for all UnitedHealthcare services in 2023? |
|
- What were the main factors contributing to the increase in net income in 2023? |
|
- source_sentence: AutoZone, Inc. began operations in 1979. |
|
sentences: |
|
- When did AutoZone, Inc. begin its operations? |
|
- Mr. Pleas was named Senior Vice President and Controller during 2007. |
|
- Which item discusses Financial Statements and Supplementary Data? |
|
- source_sentence: Are the ESG goals guaranteed to be met? |
|
sentences: |
|
- What measures is the company implementing to support climate goals? |
|
- What types of diseases does Gilead Sciences, Inc. focus on treating? |
|
- Changes in foreign exchange rates reduced cost of sales by $254 million in 2023. |
|
- source_sentence: What was Gilead's total revenue in 2023? |
|
sentences: |
|
- What was the total revenue for the year ended December 31, 2023? |
|
- How much was the impairment related to the CAT loan receivable in 2023? |
|
- What are some of the critical accounting policies that affect financial statements? |
|
pipeline_tag: sentence-similarity |
|
model-index: |
|
- name: BGE base Financial Matryoshka |
|
results: |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: basline 768 |
|
type: basline_768 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.7085714285714285 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.8514285714285714 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.8842857142857142 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.9271428571428572 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.7085714285714285 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.2838095238095238 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.17685714285714282 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.09271428571428571 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.7085714285714285 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.8514285714285714 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.8842857142857142 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.9271428571428572 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.8214972164555796 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.7873509070294781 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.790665594958196 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: basline 512 |
|
type: basline_512 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.7114285714285714 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.85 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.8828571428571429 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.9228571428571428 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.7114285714285714 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.2833333333333333 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.17657142857142855 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.09228571428571428 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.7114285714285714 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.85 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.8828571428571429 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.9228571428571428 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.820942296767774 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.7878956916099771 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.7915593121031292 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: basline 256 |
|
type: basline_256 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.7057142857142857 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.8414285714285714 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.88 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.9228571428571428 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.7057142857142857 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.28047619047619043 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.176 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.09228571428571428 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.7057142857142857 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.8414285714285714 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.88 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.9228571428571428 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.8161680075424235 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.7817953514739227 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.785367816349997 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: basline 128 |
|
type: basline_128 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.7028571428571428 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.8342857142857143 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.8742857142857143 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.9171428571428571 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.7028571428571428 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.27809523809523806 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.17485714285714282 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.09171428571428569 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.7028571428571428 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.8342857142857143 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.8742857142857143 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.9171428571428571 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.8109319521599055 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.7768752834467119 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.7802736634060462 |
|
name: Cosine Map@100 |
|
- task: |
|
type: information-retrieval |
|
name: Information Retrieval |
|
dataset: |
|
name: basline 64 |
|
type: basline_64 |
|
metrics: |
|
- type: cosine_accuracy@1 |
|
value: 0.6728571428571428 |
|
name: Cosine Accuracy@1 |
|
- type: cosine_accuracy@3 |
|
value: 0.8171428571428572 |
|
name: Cosine Accuracy@3 |
|
- type: cosine_accuracy@5 |
|
value: 0.8614285714285714 |
|
name: Cosine Accuracy@5 |
|
- type: cosine_accuracy@10 |
|
value: 0.9014285714285715 |
|
name: Cosine Accuracy@10 |
|
- type: cosine_precision@1 |
|
value: 0.6728571428571428 |
|
name: Cosine Precision@1 |
|
- type: cosine_precision@3 |
|
value: 0.2723809523809524 |
|
name: Cosine Precision@3 |
|
- type: cosine_precision@5 |
|
value: 0.17228571428571426 |
|
name: Cosine Precision@5 |
|
- type: cosine_precision@10 |
|
value: 0.09014285714285714 |
|
name: Cosine Precision@10 |
|
- type: cosine_recall@1 |
|
value: 0.6728571428571428 |
|
name: Cosine Recall@1 |
|
- type: cosine_recall@3 |
|
value: 0.8171428571428572 |
|
name: Cosine Recall@3 |
|
- type: cosine_recall@5 |
|
value: 0.8614285714285714 |
|
name: Cosine Recall@5 |
|
- type: cosine_recall@10 |
|
value: 0.9014285714285715 |
|
name: Cosine Recall@10 |
|
- type: cosine_ndcg@10 |
|
value: 0.7900026049536226 |
|
name: Cosine Ndcg@10 |
|
- type: cosine_mrr@10 |
|
value: 0.7539795918367346 |
|
name: Cosine Mrr@10 |
|
- type: cosine_map@100 |
|
value: 0.7582240178397145 |
|
name: Cosine Map@100 |
|
--- |
|
|
|
# BGE base Financial Matryoshka |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a --> |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Output Dimensionality:** 768 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
- **Language:** en |
|
- **License:** apache-2.0 |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
(2): Normalize() |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("philschmid/bge-base-financial-matryoshka") |
|
# Run inference |
|
sentences = [ |
|
"What was Gilead's total revenue in 2023?", |
|
'What was the total revenue for the year ended December 31, 2023?', |
|
'How much was the impairment related to the CAT loan receivable in 2023?', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Information Retrieval |
|
* Dataset: `basline_768` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.7086 | |
|
| cosine_accuracy@3 | 0.8514 | |
|
| cosine_accuracy@5 | 0.8843 | |
|
| cosine_accuracy@10 | 0.9271 | |
|
| cosine_precision@1 | 0.7086 | |
|
| cosine_precision@3 | 0.2838 | |
|
| cosine_precision@5 | 0.1769 | |
|
| cosine_precision@10 | 0.0927 | |
|
| cosine_recall@1 | 0.7086 | |
|
| cosine_recall@3 | 0.8514 | |
|
| cosine_recall@5 | 0.8843 | |
|
| cosine_recall@10 | 0.9271 | |
|
| cosine_ndcg@10 | 0.8215 | |
|
| cosine_mrr@10 | 0.7874 | |
|
| **cosine_map@100** | **0.7907** | |
|
|
|
#### Information Retrieval |
|
* Dataset: `basline_512` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.7114 | |
|
| cosine_accuracy@3 | 0.85 | |
|
| cosine_accuracy@5 | 0.8829 | |
|
| cosine_accuracy@10 | 0.9229 | |
|
| cosine_precision@1 | 0.7114 | |
|
| cosine_precision@3 | 0.2833 | |
|
| cosine_precision@5 | 0.1766 | |
|
| cosine_precision@10 | 0.0923 | |
|
| cosine_recall@1 | 0.7114 | |
|
| cosine_recall@3 | 0.85 | |
|
| cosine_recall@5 | 0.8829 | |
|
| cosine_recall@10 | 0.9229 | |
|
| cosine_ndcg@10 | 0.8209 | |
|
| cosine_mrr@10 | 0.7879 | |
|
| **cosine_map@100** | **0.7916** | |
|
|
|
#### Information Retrieval |
|
* Dataset: `basline_256` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.7057 | |
|
| cosine_accuracy@3 | 0.8414 | |
|
| cosine_accuracy@5 | 0.88 | |
|
| cosine_accuracy@10 | 0.9229 | |
|
| cosine_precision@1 | 0.7057 | |
|
| cosine_precision@3 | 0.2805 | |
|
| cosine_precision@5 | 0.176 | |
|
| cosine_precision@10 | 0.0923 | |
|
| cosine_recall@1 | 0.7057 | |
|
| cosine_recall@3 | 0.8414 | |
|
| cosine_recall@5 | 0.88 | |
|
| cosine_recall@10 | 0.9229 | |
|
| cosine_ndcg@10 | 0.8162 | |
|
| cosine_mrr@10 | 0.7818 | |
|
| **cosine_map@100** | **0.7854** | |
|
|
|
#### Information Retrieval |
|
* Dataset: `basline_128` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.7029 | |
|
| cosine_accuracy@3 | 0.8343 | |
|
| cosine_accuracy@5 | 0.8743 | |
|
| cosine_accuracy@10 | 0.9171 | |
|
| cosine_precision@1 | 0.7029 | |
|
| cosine_precision@3 | 0.2781 | |
|
| cosine_precision@5 | 0.1749 | |
|
| cosine_precision@10 | 0.0917 | |
|
| cosine_recall@1 | 0.7029 | |
|
| cosine_recall@3 | 0.8343 | |
|
| cosine_recall@5 | 0.8743 | |
|
| cosine_recall@10 | 0.9171 | |
|
| cosine_ndcg@10 | 0.8109 | |
|
| cosine_mrr@10 | 0.7769 | |
|
| **cosine_map@100** | **0.7803** | |
|
|
|
#### Information Retrieval |
|
* Dataset: `basline_64` |
|
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| cosine_accuracy@1 | 0.6729 | |
|
| cosine_accuracy@3 | 0.8171 | |
|
| cosine_accuracy@5 | 0.8614 | |
|
| cosine_accuracy@10 | 0.9014 | |
|
| cosine_precision@1 | 0.6729 | |
|
| cosine_precision@3 | 0.2724 | |
|
| cosine_precision@5 | 0.1723 | |
|
| cosine_precision@10 | 0.0901 | |
|
| cosine_recall@1 | 0.6729 | |
|
| cosine_recall@3 | 0.8171 | |
|
| cosine_recall@5 | 0.8614 | |
|
| cosine_recall@10 | 0.9014 | |
|
| cosine_ndcg@10 | 0.79 | |
|
| cosine_mrr@10 | 0.754 | |
|
| **cosine_map@100** | **0.7582** | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
|
|
* Size: 6,300 training samples |
|
* Columns: <code>positive</code> and <code>anchor</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | positive | anchor | |
|
|:--------|:------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| |
|
| type | string | string | |
|
| details | <ul><li>min: 10 tokens</li><li>mean: 46.11 tokens</li><li>max: 289 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 20.26 tokens</li><li>max: 43 tokens</li></ul> | |
|
* Samples: |
|
| positive | anchor | |
|
|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------| |
|
| <code>Fiscal 2023 total gross profit margin of 35.1% represents an increase of 1.7 percentage points as compared to the respective prior year period.</code> | <code>What was the total gross profit margin for Hewlett Packard Enterprise in fiscal 2023?</code> | |
|
| <code>Noninterest expense increased to $65.8 billion in 2023, primarily due to higher investments in people and technology and higher FDIC expense, including $2.1 billion for the estimated special assessment amount arising from the closure of Silicon Valley Bank and Signature Bank.</code> | <code>What was the total noninterest expense for the company in 2023?</code> | |
|
| <code>As of May 31, 2022, FedEx Office had approximately 12,000 employees.</code> | <code>How many employees did FedEx Office have as of May 31, 2023?</code> | |
|
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: |
|
```json |
|
{ |
|
"loss": "MultipleNegativesRankingLoss", |
|
"matryoshka_dims": [ |
|
768, |
|
512, |
|
256, |
|
128, |
|
64 |
|
], |
|
"matryoshka_weights": [ |
|
1, |
|
1, |
|
1, |
|
1, |
|
1 |
|
], |
|
"n_dims_per_step": -1 |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: epoch |
|
- `per_device_train_batch_size`: 32 |
|
- `per_device_eval_batch_size`: 16 |
|
- `gradient_accumulation_steps`: 16 |
|
- `learning_rate`: 2e-05 |
|
- `num_train_epochs`: 4 |
|
- `lr_scheduler_type`: cosine |
|
- `warmup_ratio`: 0.1 |
|
- `bf16`: True |
|
- `tf32`: True |
|
- `load_best_model_at_end`: True |
|
- `optim`: adamw_torch_fused |
|
- `batch_sampler`: no_duplicates |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: epoch |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 32 |
|
- `per_device_eval_batch_size`: 16 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 16 |
|
- `eval_accumulation_steps`: None |
|
- `learning_rate`: 2e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 4 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: cosine |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: True |
|
- `fp16`: False |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: True |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: True |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch_fused |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `sanity_evaluation`: False |
|
- `batch_sampler`: no_duplicates |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | basline_128_cosine_map@100 | basline_256_cosine_map@100 | basline_512_cosine_map@100 | basline_64_cosine_map@100 | basline_768_cosine_map@100 | |
|
|:----------:|:------:|:-------------:|:--------------------------:|:--------------------------:|:--------------------------:|:-------------------------:|:--------------------------:| |
|
| 0.8122 | 10 | 1.5259 | - | - | - | - | - | |
|
| 0.9746 | 12 | - | 0.7502 | 0.7737 | 0.7827 | 0.7185 | 0.7806 | |
|
| 1.6244 | 20 | 0.6545 | - | - | - | - | - | |
|
| **1.9492** | **24** | **-** | **0.7689** | **0.7844** | **0.7869** | **0.7447** | **0.7909** | |
|
| 2.4365 | 30 | 0.4784 | - | - | - | - | - | |
|
| 2.9239 | 36 | - | 0.7733 | 0.7916 | 0.7904 | 0.7491 | 0.7930 | |
|
| 3.2487 | 40 | 0.3827 | - | - | - | - | - | |
|
| 3.8985 | 48 | - | 0.7739 | 0.7907 | 0.7900 | 0.7479 | 0.7948 | |
|
| 0.8122 | 10 | 0.2685 | - | - | - | - | - | |
|
| 0.9746 | 12 | - | 0.7779 | 0.7932 | 0.7948 | 0.7517 | 0.7943 | |
|
| 1.6244 | 20 | 0.183 | - | - | - | - | - | |
|
| **1.9492** | **24** | **-** | **0.7784** | **0.7929** | **0.7963** | **0.7575** | **0.7957** | |
|
| 2.4365 | 30 | 0.1877 | - | - | - | - | - | |
|
| 2.9239 | 36 | - | 0.7814 | 0.7914 | 0.7992 | 0.7570 | 0.7974 | |
|
| 3.2487 | 40 | 0.1826 | - | - | - | - | - | |
|
| 3.8985 | 48 | - | 0.7818 | 0.7916 | 0.7976 | 0.7580 | 0.7960 | |
|
| 0.8122 | 10 | 0.071 | - | - | - | - | - | |
|
| 0.9746 | 12 | - | 0.7810 | 0.7935 | 0.7954 | 0.7550 | 0.7949 | |
|
| 1.6244 | 20 | 0.0629 | - | - | - | - | - | |
|
| **1.9492** | **24** | **-** | **0.7855** | **0.7914** | **0.7989** | **0.7559** | **0.7981** | |
|
| 2.4365 | 30 | 0.0827 | - | - | - | - | - | |
|
| 2.9239 | 36 | - | 0.7893 | 0.7927 | 0.7987 | 0.7539 | 0.7961 | |
|
| 3.2487 | 40 | 0.1003 | - | - | - | - | - | |
|
| 3.8985 | 48 | - | 0.7903 | 0.7915 | 0.7980 | 0.7530 | 0.7951 | |
|
| 0.8122 | 10 | 0.0213 | - | - | - | - | - | |
|
| 0.9746 | 12 | - | 0.7786 | 0.7869 | 0.7885 | 0.7566 | 0.7908 | |
|
| 1.6244 | 20 | 0.0234 | - | - | - | - | - | |
|
| **1.9492** | **24** | **-** | **0.783** | **0.7882** | **0.793** | **0.7551** | **0.7946** | |
|
| 2.4365 | 30 | 0.0357 | - | - | - | - | - | |
|
| 2.9239 | 36 | - | 0.7838 | 0.7892 | 0.7922 | 0.7579 | 0.7907 | |
|
| 3.2487 | 40 | 0.0563 | - | - | - | - | - | |
|
| 3.8985 | 48 | - | 0.7846 | 0.7887 | 0.7912 | 0.7582 | 0.7901 | |
|
| 0.8122 | 10 | 0.0075 | - | - | - | - | - | |
|
| 0.9746 | 12 | - | 0.7730 | 0.7816 | 0.7818 | 0.7550 | 0.7868 | |
|
| 1.6244 | 20 | 0.01 | - | - | - | - | - | |
|
| **1.9492** | **24** | **-** | **0.7827** | **0.785** | **0.7896** | **0.7551** | **0.7915** | |
|
| 2.4365 | 30 | 0.0154 | - | - | - | - | - | |
|
| 2.9239 | 36 | - | 0.7808 | 0.7838 | 0.7921 | 0.7584 | 0.7916 | |
|
| 3.2487 | 40 | 0.0312 | - | - | - | - | - | |
|
| 3.8985 | 48 | - | 0.7803 | 0.7854 | 0.7916 | 0.7582 | 0.7907 | |
|
|
|
* The bold row denotes the saved checkpoint. |
|
|
|
### Framework Versions |
|
- Python: 3.10.13 |
|
- Sentence Transformers: 3.0.0 |
|
- Transformers: 4.42.0.dev0 |
|
- PyTorch: 2.1.2+cu121 |
|
- Accelerate: 0.29.2 |
|
- Datasets: 2.19.1 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
#### MatryoshkaLoss |
|
```bibtex |
|
@misc{kusupati2024matryoshka, |
|
title={Matryoshka Representation Learning}, |
|
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, |
|
year={2024}, |
|
eprint={2205.13147}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.LG} |
|
} |
|
``` |
|
|
|
#### MultipleNegativesRankingLoss |
|
```bibtex |
|
@misc{henderson2017efficient, |
|
title={Efficient Natural Language Response Suggestion for Smart Reply}, |
|
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, |
|
year={2017}, |
|
eprint={1705.00652}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |