PhoBert_Lexical_CITA_15k
This model is a fine-tuned version of vinai/phobert-base-v2 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.6985
- Accuracy: 0.7967
- F1: 0.7941
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
0.4823 | 1.0 | 375 | 0.4343 | 0.8083 | 0.7998 |
0.395 | 2.0 | 750 | 0.4346 | 0.8057 | 0.8048 |
0.3435 | 3.0 | 1125 | 0.4610 | 0.8167 | 0.8127 |
0.2964 | 4.0 | 1500 | 0.4918 | 0.811 | 0.7995 |
0.257 | 5.0 | 1875 | 0.5294 | 0.8023 | 0.8011 |
0.214 | 6.0 | 2250 | 0.5705 | 0.8057 | 0.7997 |
0.1855 | 7.0 | 2625 | 0.5938 | 0.7993 | 0.7963 |
0.1635 | 8.0 | 3000 | 0.6803 | 0.7997 | 0.7954 |
0.1452 | 9.0 | 3375 | 0.6795 | 0.7933 | 0.7911 |
0.1364 | 10.0 | 3750 | 0.6985 | 0.7967 | 0.7941 |
Framework versions
- Transformers 4.48.0
- Pytorch 2.1.2
- Datasets 2.20.0
- Tokenizers 0.21.0
- Downloads last month
- 9
Model tree for phunganhsang/PhoBert_Lexical_CITA_15k
Base model
vinai/phobert-base-v2