Edit model card

Visualize in Weights & Biases

PhoBert_Lexical_Dataset51KBoDuoiWithNewLexical

This model is a fine-tuned version of vinai/phobert-base-v2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8197
  • Accuracy: 0.8365
  • F1: 0.8356

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
No log 0.2506 200 0.7452 0.6740 0.6750
No log 0.5013 400 0.6223 0.7292 0.7124
No log 0.7519 600 0.5929 0.7394 0.7379
0.3501 1.0025 800 0.5602 0.7622 0.7502
0.3501 1.2531 1000 0.5534 0.7711 0.7628
0.3501 1.5038 1200 0.6296 0.7518 0.7517
0.3501 1.7544 1400 0.5476 0.7646 0.7562
0.2598 2.0050 1600 0.5547 0.7742 0.7672
0.2598 2.2556 1800 0.6056 0.7662 0.7628
0.2598 2.5063 2000 0.5986 0.7575 0.7566
0.2598 2.7569 2200 0.5618 0.7851 0.7795
0.2143 3.0075 2400 0.5639 0.7806 0.7783
0.2143 3.2581 2600 0.5837 0.7726 0.7643
0.2143 3.5088 2800 0.5915 0.7735 0.7724
0.2143 3.7594 3000 0.6132 0.7772 0.7735
0.184 4.0100 3200 0.5625 0.7946 0.7895
0.184 4.2607 3400 0.5947 0.7862 0.7841
0.184 4.5113 3600 0.5733 0.8033 0.7998
0.184 4.7619 3800 0.6023 0.7928 0.7882
0.1534 5.0125 4000 0.5951 0.7955 0.7901
0.1534 5.2632 4200 0.6342 0.7975 0.7953
0.1534 5.5138 4400 0.6433 0.8002 0.7982
0.1534 5.7644 4600 0.6160 0.8018 0.7998
0.1316 6.0150 4800 0.6199 0.8129 0.8102
0.1316 6.2657 5000 0.6368 0.8061 0.8043
0.1316 6.5163 5200 0.6319 0.8143 0.8099
0.1316 6.7669 5400 0.6837 0.7915 0.7900
0.1123 7.0175 5600 0.7237 0.8041 0.8036
0.1123 7.2682 5800 0.6456 0.8095 0.8079
0.1123 7.5188 6000 0.6659 0.8181 0.8152
0.1123 7.7694 6200 0.7378 0.8028 0.8021
0.0958 8.0201 6400 0.6836 0.8102 0.8095
0.0958 8.2707 6600 0.7123 0.8121 0.8122
0.0958 8.5213 6800 0.7342 0.8182 0.8163
0.0958 8.7719 7000 0.7296 0.8192 0.8178
0.0806 9.0226 7200 0.7005 0.8233 0.8208
0.0806 9.2732 7400 0.7088 0.8253 0.8237
0.0806 9.5238 7600 0.7216 0.8192 0.8185
0.0806 9.7744 7800 0.7438 0.8215 0.8205
0.0712 10.0251 8000 0.7037 0.8328 0.8315
0.0712 10.2757 8200 0.7506 0.8293 0.8282
0.0712 10.5263 8400 0.7582 0.8222 0.8215
0.0712 10.7769 8600 0.7381 0.8266 0.8258
0.0622 11.0276 8800 0.7813 0.8265 0.8251
0.0622 11.2782 9000 0.7565 0.8339 0.8330
0.0622 11.5288 9200 0.7879 0.8310 0.8307
0.0622 11.7794 9400 0.7770 0.8309 0.8305
0.0534 12.0301 9600 0.7488 0.8360 0.8353
0.0534 12.2807 9800 0.7980 0.8352 0.8340
0.0534 12.5313 10000 0.7541 0.8393 0.8381
0.0534 12.7820 10200 0.7996 0.8330 0.8324
0.0482 13.0326 10400 0.7863 0.8350 0.8343
0.0482 13.2832 10600 0.8185 0.8355 0.8349
0.0482 13.5338 10800 0.8225 0.8353 0.8346
0.0482 13.7845 11000 0.8023 0.8363 0.8355
0.0426 14.0351 11200 0.8098 0.8360 0.8352
0.0426 14.2857 11400 0.8205 0.8326 0.8319
0.0426 14.5363 11600 0.8161 0.8353 0.8344
0.0426 14.7870 11800 0.8197 0.8365 0.8356

Framework versions

  • Transformers 4.43.1
  • Pytorch 2.1.2
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
0
Safetensors
Model size
135M params
Tensor type
F32
·
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for phunganhsang/PhoBert_Lexical_Dataset51KBoDuoiWithNewLexical

Finetuned
(182)
this model