test1 / README.md
piazzola's picture
Update README.md
ffd0f16 verified
|
raw
history blame
2.2 kB
metadata
license: cc-by-nc-nd-4.0
base_model: google/t5-efficient-base
tags:
  - generated_from_trainer
model-index:
  - name: checkpoint
    results: []

how to use the model

Load model directly

`from transformers import AutoTokenizer, AutoModelForSeq2SeqLM import torch

tokenizer = AutoTokenizer.from_pretrained("piazzola/test1") model = AutoModelForSeq2SeqLM.from_pretrained("piazzola/test1")

sentence = "i left the keys in the car."

with torch.no_grad(): inputs = tokenizer([sentence], return_tensors="pt") outputs = model.generate(**inputs) generated_text = tokenizer.decode(outputs[0])

print(generated_text)`

checkpoint

This model is a fine-tuned version of google/t5-efficient-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1609

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss
0.3088 0.3 7458 0.2634
0.2615 0.6 14916 0.2143
0.2294 0.9 22374 0.1951
0.2137 1.2 29832 0.1830
0.1944 1.5 37290 0.1736
0.1918 1.8 44748 0.1682
0.18 2.1 52206 0.1659
0.1801 2.4 59664 0.1623
0.185 2.7 67122 0.1609

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.17.1
  • Tokenizers 0.15.2