|
--- |
|
license: cc-by-nc-nd-4.0 |
|
base_model: google/t5-efficient-base |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: checkpoint |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# how to use the model |
|
|
|
``` |
|
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM |
|
import torch |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("piazzola/test1") |
|
model = AutoModelForSeq2SeqLM.from_pretrained("piazzola/test1") |
|
|
|
sentence = "i left the keys in the car." |
|
|
|
with torch.no_grad(): |
|
inputs = tokenizer([sentence], return_tensors="pt") |
|
outputs = model.generate(**inputs, max_new_tokens=100) |
|
generated_text = tokenizer.decode(outputs[0]) |
|
|
|
print(generated_text) |
|
``` |
|
|
|
# checkpoint |
|
|
|
This model is a fine-tuned version of [google/t5-efficient-base](https://huggingface.co/google/t5-efficient-base) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1609 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:-----:|:---------------:| |
|
| 0.3088 | 0.3 | 7458 | 0.2634 | |
|
| 0.2615 | 0.6 | 14916 | 0.2143 | |
|
| 0.2294 | 0.9 | 22374 | 0.1951 | |
|
| 0.2137 | 1.2 | 29832 | 0.1830 | |
|
| 0.1944 | 1.5 | 37290 | 0.1736 | |
|
| 0.1918 | 1.8 | 44748 | 0.1682 | |
|
| 0.18 | 2.1 | 52206 | 0.1659 | |
|
| 0.1801 | 2.4 | 59664 | 0.1623 | |
|
| 0.185 | 2.7 | 67122 | 0.1609 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.38.2 |
|
- Pytorch 2.2.1+cu121 |
|
- Datasets 2.17.1 |
|
- Tokenizers 0.15.2 |