File size: 2,507 Bytes
bf66e5a
366e62e
bf66e5a
 
 
 
 
 
833b301
000ad8b
 
bf66e5a
 
216cf30
bf66e5a
 
4f7f1d5
bf66e5a
 
 
 
 
4c4f932
bf66e5a
000ad8b
0e224b1
b29c898
4c4f932
0e224b1
4c4f932
66e62c6
000ad8b
 
 
 
 
 
 
 
02ffbef
e1040a6
000ad8b
cd860a6
000ad8b
5e35500
392d92f
833b301
bf66e5a
 
 
 
 
 
 
 
 
 
366e62e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
from typing import Dict, List, Any
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline, StoppingCriteria, StoppingCriteriaList


class EndpointHandler():
    def __init__(self, path=""):
        # Preload all the elements you are going to need at inference.
        tokenizer = AutoTokenizer.from_pretrained(path)
        tokenizer.pad_token = tokenizer.eos_token
        self.model = AutoModelForCausalLM.from_pretrained(path)
        self.tokenizer = tokenizer
        self.stopping_criteria = StoppingCriteriaList([StopAtPeriodCriteria(tokenizer)])

    def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
        """
       data args:
            inputs (:obj: `str`)
            kwargs
      Return:
            A :obj:`list` | `dict`: will be serialized and returned
        """
        inputs = data.pop("inputs", data)
        additional_bad_words_ids = data.pop("additional_bad_words_ids", [])


        # 3070, 10456, [313, 334] corresponds to "(*", and we do not want to output a comment
        # 13 is a newline character
        # [1976, 441, 29889], [4920, 441, 29889] is "Abort." [4920, 18054, 29889] is "Aborted."
        # [2087, 29885, 4430, 29889] is "Admitted."
        bad_words_ids = [[3070], [313, 334], [10456], [13], [1976, 441, 29889], [2087, 29885, 4430, 29889], [4920, 441], [4920, 441, 29889], [4920, 18054, 29889]]
        bad_words_ids.extend(additional_bad_words_ids)

        input_ids = self.tokenizer.encode(inputs, return_tensors="pt")

        # Generate text using model.generate
        generated_ids = self.model.generate(
            input_ids,
            max_length=input_ids.shape[1] + 50,  # 50 new tokens
            bad_words_ids=bad_words_ids,
            temperature=1,
            top_k=40,
            stopping_criteria=self.stopping_criteria,
        )

        generated_text = self.tokenizer.decode(generated_ids[0][input_ids.shape[1]:], skip_special_tokens=True)
        prediction = [{"generated_text": generated_text, "generated_ids": generated_ids[0][input_ids.shape[1]:].tolist()}]
        return prediction


class StopAtPeriodCriteria(StoppingCriteria):
    def __init__(self, tokenizer):
        self.tokenizer = tokenizer

    def __call__(self, input_ids, scores, **kwargs):
        # Decode the last generated token to text
        last_token_text = self.tokenizer.decode(input_ids[:, -1], skip_special_tokens=True)
        # Check if the decoded text ends with a period
        return '.' in last_token_text