|
--- |
|
language: [] |
|
library_name: sentence-transformers |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- dataset_size:10K<n<100K |
|
- loss:CosineSimilarityLoss |
|
base_model: distilbert/distilbert-base-uncased |
|
metrics: |
|
- pearson_cosine |
|
- spearman_cosine |
|
- pearson_manhattan |
|
- spearman_manhattan |
|
- pearson_euclidean |
|
- spearman_euclidean |
|
- pearson_dot |
|
- spearman_dot |
|
- pearson_max |
|
- spearman_max |
|
widget: |
|
- source_sentence: The long jump pit had to be raked after every few attempts. |
|
sentences: |
|
- The high jumper cleared the bar on his first attempt. |
|
- Chemists use quantum mechanics to predict electron behavior and molecular bonding. |
|
- Eczema frequently appears as inflamed, tender spots on several parts of the body. |
|
- source_sentence: Street art transforms empty rural barns into lively murals. |
|
sentences: |
|
- Traditional folk music plays a significant role in preserving a community's history. |
|
- '[SYNTAX] The saxophone offers the high-pitched, thrilling elements in a jazz |
|
trio.' |
|
- Atmospheric pressure decreases as you move higher above sea level. |
|
- source_sentence: Proteins are synthesized through the process of translation. |
|
sentences: |
|
- Molecular genetics studies the structure and function of genes at a molecular |
|
level. |
|
- The mathematics lecture is a compelling method for introducing integral equations. |
|
- 'The correlation between air pollution and increased mortality rates is well-documented. ' |
|
- source_sentence: '[SYNTAX] A barometer is used to measure atmospheric pressure.' |
|
sentences: |
|
- '[SYNTAX] Colonialism is a primary subject in several political science research |
|
papers.' |
|
- '[SYNTAX] Ordinary urban walls are turned into vibrant masterpieces by street |
|
art.' |
|
- Email remains a significant device for academic and fictional correspondence. |
|
- source_sentence: Salinity gradients in oceans affect local wildlife habitats. |
|
sentences: |
|
- The distribution of wildlife in different habitats has fascinated ecologists for |
|
decades. |
|
- '[SYNTAX] Bioenergy plants can convert agricultural waste into valuable electricity.' |
|
- Proper management of irrigation schedules is crucial for crop health. |
|
pipeline_tag: sentence-similarity |
|
model-index: |
|
- name: SentenceTransformer based on distilbert/distilbert-base-uncased |
|
results: |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: custom dev |
|
type: custom-dev |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.9117000984572255 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.8442193394453843 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.9156511082976959 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.8440889792296263 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.9159884478218315 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.8445673615230997 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.9046139794819923 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.8327655787489855 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.9159884478218315 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.8445673615230997 |
|
name: Spearman Max |
|
- task: |
|
type: semantic-similarity |
|
name: Semantic Similarity |
|
dataset: |
|
name: custom test |
|
type: custom-test |
|
metrics: |
|
- type: pearson_cosine |
|
value: 0.919801732989496 |
|
name: Pearson Cosine |
|
- type: spearman_cosine |
|
value: 0.8500534773438543 |
|
name: Spearman Cosine |
|
- type: pearson_manhattan |
|
value: 0.9282084953416339 |
|
name: Pearson Manhattan |
|
- type: spearman_manhattan |
|
value: 0.8493690342081703 |
|
name: Spearman Manhattan |
|
- type: pearson_euclidean |
|
value: 0.9284184436823353 |
|
name: Pearson Euclidean |
|
- type: spearman_euclidean |
|
value: 0.849759760833697 |
|
name: Spearman Euclidean |
|
- type: pearson_dot |
|
value: 0.9141474471982576 |
|
name: Pearson Dot |
|
- type: spearman_dot |
|
value: 0.8410969822964006 |
|
name: Spearman Dot |
|
- type: pearson_max |
|
value: 0.9284184436823353 |
|
name: Pearson Max |
|
- type: spearman_max |
|
value: 0.8500534773438543 |
|
name: Spearman Max |
|
--- |
|
|
|
# SentenceTransformer based on distilbert/distilbert-base-uncased |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) <!-- at revision 12040accade4e8a0f71eabdb258fecc2e7e948be --> |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Output Dimensionality:** 768 tokens |
|
- **Similarity Function:** Cosine Similarity |
|
<!-- - **Training Dataset:** Unknown --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("sentence_transformers_model_id") |
|
# Run inference |
|
sentences = [ |
|
'Salinity gradients in oceans affect local wildlife habitats.', |
|
'The distribution of wildlife in different habitats has fascinated ecologists for decades.', |
|
'[SYNTAX] Bioenergy plants can convert agricultural waste into valuable electricity.', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
|
|
#### Semantic Similarity |
|
* Dataset: `custom-dev` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.9117 | |
|
| **spearman_cosine** | **0.8442** | |
|
| pearson_manhattan | 0.9157 | |
|
| spearman_manhattan | 0.8441 | |
|
| pearson_euclidean | 0.916 | |
|
| spearman_euclidean | 0.8446 | |
|
| pearson_dot | 0.9046 | |
|
| spearman_dot | 0.8328 | |
|
| pearson_max | 0.916 | |
|
| spearman_max | 0.8446 | |
|
|
|
#### Semantic Similarity |
|
* Dataset: `custom-test` |
|
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) |
|
|
|
| Metric | Value | |
|
|:--------------------|:-----------| |
|
| pearson_cosine | 0.9198 | |
|
| **spearman_cosine** | **0.8501** | |
|
| pearson_manhattan | 0.9282 | |
|
| spearman_manhattan | 0.8494 | |
|
| pearson_euclidean | 0.9284 | |
|
| spearman_euclidean | 0.8498 | |
|
| pearson_dot | 0.9141 | |
|
| spearman_dot | 0.8411 | |
|
| pearson_max | 0.9284 | |
|
| spearman_max | 0.8501 | |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
|
|
* Size: 19,352 training samples |
|
* Columns: <code>s1</code>, <code>s2</code>, and <code>label</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | s1 | s2 | label | |
|
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:------------------------------------------------| |
|
| type | string | string | int | |
|
| details | <ul><li>min: 10 tokens</li><li>mean: 19.92 tokens</li><li>max: 42 tokens</li></ul> | <ul><li>min: 10 tokens</li><li>mean: 20.53 tokens</li><li>max: 42 tokens</li></ul> | <ul><li>0: ~50.50%</li><li>1: ~49.50%</li></ul> | |
|
* Samples: |
|
| s1 | s2 | label | |
|
|:-----------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------|:---------------| |
|
| <code>According to labeling theory, individuals are considered deviant once society has tagged them with that label.</code> | <code>Labeling theory posits that corporations become powerful when labeled as such by stakeholders.</code> | <code>0</code> | |
|
| <code>Employers must classify workers correctly as either employees or independent contractors to comply with tax and labor laws.</code> | <code>Employers must classify workers correctly as either employees or independent contractors to comply with tax and labor laws.</code> | <code>1</code> | |
|
| <code>Higher education institutions play a critical role in advancing research and innovation.</code> | <code>Advancement in research and innovation is significantly driven by the contributions of higher education institutions.</code> | <code>1</code> | |
|
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters: |
|
```json |
|
{ |
|
"loss_fct": "torch.nn.modules.loss.MSELoss" |
|
} |
|
``` |
|
|
|
### Evaluation Dataset |
|
|
|
#### Unnamed Dataset |
|
|
|
|
|
* Size: 2,419 evaluation samples |
|
* Columns: <code>s1</code>, <code>s2</code>, and <code>label</code> |
|
* Approximate statistics based on the first 1000 samples: |
|
| | s1 | s2 | label | |
|
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:------------------------------------------------| |
|
| type | string | string | int | |
|
| details | <ul><li>min: 11 tokens</li><li>mean: 19.91 tokens</li><li>max: 37 tokens</li></ul> | <ul><li>min: 11 tokens</li><li>mean: 20.46 tokens</li><li>max: 42 tokens</li></ul> | <ul><li>0: ~49.70%</li><li>1: ~50.30%</li></ul> | |
|
* Samples: |
|
| s1 | s2 | label | |
|
|:----------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------|:---------------| |
|
| <code>Acoustic tomography is an innovative geophysical technique used to image the Earth's interior.</code> | <code>Acoustic tomography is an innovative geophysical technique used to image the Earth's interior.</code> | <code>1</code> | |
|
| <code>Urban areas frequently exhibit a different age distribution pattern compared to rural areas.</code> | <code>Urban areas frequently exhibit a different age distribution pattern compared to rural areas.</code> | <code>1</code> | |
|
| <code>Radiocarbon dating is a critical tool for assessing the duration of battery life in modern electronic devices.</code> | <code>Radiocarbon dating is a critical tool for assessing the duration of battery life in modern electronic devices.</code> | <code>1</code> | |
|
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters: |
|
```json |
|
{ |
|
"loss_fct": "torch.nn.modules.loss.MSELoss" |
|
} |
|
``` |
|
|
|
### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: steps |
|
- `per_device_train_batch_size`: 16 |
|
- `per_device_eval_batch_size`: 16 |
|
- `num_train_epochs`: 10 |
|
- `warmup_ratio`: 0.1 |
|
- `fp16`: True |
|
|
|
#### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: steps |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 16 |
|
- `per_device_eval_batch_size`: 16 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `learning_rate`: 5e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1.0 |
|
- `num_train_epochs`: 10 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: linear |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.1 |
|
- `warmup_steps`: 0 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: True |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: False |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: False |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: False |
|
- `torch_compile_backend`: None |
|
- `torch_compile_mode`: None |
|
- `dispatch_batches`: None |
|
- `split_batches`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `batch_sampler`: batch_sampler |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | loss | custom-dev_spearman_cosine | custom-test_spearman_cosine | |
|
|:------:|:----:|:-------------:|:------:|:--------------------------:|:---------------------------:| |
|
| 0.3300 | 100 | 0.2961 | 0.1185 | 0.8063 | - | |
|
| 0.6601 | 200 | 0.0772 | 0.0504 | 0.8461 | - | |
|
| 0.9901 | 300 | 0.0502 | 0.0454 | 0.8486 | - | |
|
| 1.3201 | 400 | 0.0376 | 0.0402 | 0.8481 | - | |
|
| 1.6502 | 500 | 0.0344 | 0.0400 | 0.8501 | - | |
|
| 1.9802 | 600 | 0.0329 | 0.0390 | 0.8518 | - | |
|
| 2.3102 | 700 | 0.0185 | 0.0387 | 0.8496 | - | |
|
| 2.6403 | 800 | 0.0164 | 0.0371 | 0.8492 | - | |
|
| 2.9703 | 900 | 0.0179 | 0.0393 | 0.8428 | - | |
|
| 3.3003 | 1000 | 0.0099 | 0.0389 | 0.8466 | - | |
|
| 3.6304 | 1100 | 0.0092 | 0.0395 | 0.8480 | - | |
|
| 3.9604 | 1200 | 0.0101 | 0.0368 | 0.8492 | - | |
|
| 4.2904 | 1300 | 0.0067 | 0.0385 | 0.8474 | - | |
|
| 4.6205 | 1400 | 0.0056 | 0.0393 | 0.8456 | - | |
|
| 4.9505 | 1500 | 0.0068 | 0.0401 | 0.8466 | - | |
|
| 5.2805 | 1600 | 0.0041 | 0.0410 | 0.8462 | - | |
|
| 5.6106 | 1700 | 0.0043 | 0.0399 | 0.8469 | - | |
|
| 5.9406 | 1800 | 0.0039 | 0.0406 | 0.8463 | - | |
|
| 6.2706 | 1900 | 0.003 | 0.0400 | 0.8456 | - | |
|
| 6.6007 | 2000 | 0.0026 | 0.0416 | 0.8438 | - | |
|
| 6.9307 | 2100 | 0.0027 | 0.0420 | 0.8437 | - | |
|
| 7.2607 | 2200 | 0.0028 | 0.0424 | 0.8449 | - | |
|
| 7.5908 | 2300 | 0.0021 | 0.0422 | 0.8458 | - | |
|
| 7.9208 | 2400 | 0.002 | 0.0414 | 0.8451 | - | |
|
| 8.2508 | 2500 | 0.0015 | 0.0421 | 0.8451 | - | |
|
| 8.5809 | 2600 | 0.0015 | 0.0427 | 0.8451 | - | |
|
| 8.9109 | 2700 | 0.0016 | 0.0429 | 0.8444 | - | |
|
| 9.2409 | 2800 | 0.0011 | 0.0432 | 0.8442 | - | |
|
| 9.5710 | 2900 | 0.0014 | 0.0432 | 0.8444 | - | |
|
| 9.9010 | 3000 | 0.0011 | 0.0432 | 0.8442 | - | |
|
| 10.0 | 3030 | - | - | - | 0.8501 | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.11.9 |
|
- Sentence Transformers: 3.0.0 |
|
- Transformers: 4.41.2 |
|
- PyTorch: 2.3.0+cu121 |
|
- Accelerate: 0.30.1 |
|
- Datasets: 2.19.1 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |