Edit model card

nominal-groups-recognition-medical-disease-competencia2-bert-medical-ner

This model is a fine-tuned version of ukkendane/bert-medical-ner on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3607
  • Body Part Precision: 0.6555
  • Body Part Recall: 0.7094
  • Body Part F1: 0.6814
  • Body Part Number: 413
  • Disease Precision: 0.6835
  • Disease Recall: 0.7067
  • Disease F1: 0.6949
  • Disease Number: 975
  • Family Member Precision: 1.0
  • Family Member Recall: 0.6
  • Family Member F1: 0.7500
  • Family Member Number: 30
  • Medication Precision: 0.7647
  • Medication Recall: 0.6989
  • Medication F1: 0.7303
  • Medication Number: 93
  • Procedure Precision: 0.5385
  • Procedure Recall: 0.5402
  • Procedure F1: 0.5393
  • Procedure Number: 311
  • Overall Precision: 0.6594
  • Overall Recall: 0.6767
  • Overall F1: 0.6679
  • Overall Accuracy: 0.9079

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 13
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Body Part Precision Body Part Recall Body Part F1 Body Part Number Disease Precision Disease Recall Disease F1 Disease Number Family Member Precision Family Member Recall Family Member F1 Family Member Number Medication Precision Medication Recall Medication F1 Medication Number Procedure Precision Procedure Recall Procedure F1 Procedure Number Overall Precision Overall Recall Overall F1 Overall Accuracy
0.4541 1.0 8025 0.3607 0.6555 0.7094 0.6814 413 0.6835 0.7067 0.6949 975 1.0 0.6 0.7500 30 0.7647 0.6989 0.7303 93 0.5385 0.5402 0.5393 311 0.6594 0.6767 0.6679 0.9079
0.3149 2.0 16050 0.3607 0.6555 0.7094 0.6814 413 0.6835 0.7067 0.6949 975 1.0 0.6 0.7500 30 0.7647 0.6989 0.7303 93 0.5385 0.5402 0.5393 311 0.6594 0.6767 0.6679 0.9079
0.3161 3.0 24075 0.3607 0.6555 0.7094 0.6814 413 0.6835 0.7067 0.6949 975 1.0 0.6 0.7500 30 0.7647 0.6989 0.7303 93 0.5385 0.5402 0.5393 311 0.6594 0.6767 0.6679 0.9079
0.3181 4.0 32100 0.3607 0.6555 0.7094 0.6814 413 0.6835 0.7067 0.6949 975 1.0 0.6 0.7500 30 0.7647 0.6989 0.7303 93 0.5385 0.5402 0.5393 311 0.6594 0.6767 0.6679 0.9079
0.3164 5.0 40125 0.3607 0.6555 0.7094 0.6814 413 0.6835 0.7067 0.6949 975 1.0 0.6 0.7500 30 0.7647 0.6989 0.7303 93 0.5385 0.5402 0.5393 311 0.6594 0.6767 0.6679 0.9079

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.0.1+cu117
  • Datasets 2.13.1
  • Tokenizers 0.13.3
Downloads last month
32
Safetensors
Model size
109M params
Tensor type
I64
·
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.