vit-base-letter / README.md
pittawat's picture
Librarian Bot: Add base_model information to model (#3)
7210228
metadata
language:
  - en
license: apache-2.0
tags:
  - image-classification
  - generated_from_trainer
datasets:
  - pittawat/letter_recognition
metrics:
  - accuracy
base_model: google/vit-base-patch16-224-in21k
model-index:
  - name: vit-base-letter
    results: []

vit-base-letter

This model is a fine-tuned version of google/vit-base-patch16-224-in21k on the pittawat/letter_recognition dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0515
  • Accuracy: 0.9881

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.5539 0.12 100 0.5576 0.9308
0.2688 0.25 200 0.2371 0.9665
0.1568 0.37 300 0.1829 0.9688
0.1684 0.49 400 0.1611 0.9662
0.1584 0.62 500 0.1340 0.9673
0.1569 0.74 600 0.1933 0.9531
0.0992 0.86 700 0.1031 0.9781
0.0573 0.98 800 0.1024 0.9781
0.0359 1.11 900 0.0950 0.9804
0.0961 1.23 1000 0.1200 0.9723
0.0334 1.35 1100 0.0995 0.975
0.0855 1.48 1200 0.0791 0.9815
0.0902 1.6 1300 0.0981 0.9765
0.0583 1.72 1400 0.1192 0.9712
0.0683 1.85 1500 0.0692 0.9846
0.1188 1.97 1600 0.0931 0.9785
0.0366 2.09 1700 0.0919 0.9804
0.0276 2.21 1800 0.0667 0.9846
0.0309 2.34 1900 0.0599 0.9858
0.0183 2.46 2000 0.0892 0.9769
0.0431 2.58 2100 0.0663 0.985
0.0424 2.71 2200 0.0643 0.9862
0.0453 2.83 2300 0.0646 0.9862
0.0528 2.95 2400 0.0550 0.985
0.0045 3.08 2500 0.0579 0.9846
0.007 3.2 2600 0.0517 0.9885
0.0048 3.32 2700 0.0584 0.9865
0.019 3.44 2800 0.0560 0.9873
0.0038 3.57 2900 0.0515 0.9881
0.0219 3.69 3000 0.0527 0.9881
0.0117 3.81 3100 0.0523 0.9888
0.0035 3.94 3200 0.0559 0.9865

Framework versions

  • Transformers 4.26.1
  • Pytorch 1.13.0
  • Datasets 2.1.0
  • Tokenizers 0.13.2