piyushmaharana's picture
End of training
a806551 verified
metadata
language:
  - en
license: apache-2.0
base_model: piyushmaharana/outcomes-whisper-tiny-v1
tags:
  - generated_from_trainer
datasets:
  - ray-outcomes-ai/big-transcript-pronounce
metrics:
  - wer
model-index:
  - name: OutcomesAI-Whisper-tiny-v1.2
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: big-transcript-pronounce
          type: ray-outcomes-ai/big-transcript-pronounce
          args: 'config: en, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 2.8199566160520604

OutcomesAI-Whisper-tiny-v1.2

This model is a fine-tuned version of piyushmaharana/outcomes-whisper-tiny-v1 on the big-transcript-pronounce dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0602
  • Wer: 2.8200

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • training_steps: 2000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0401 12.5 100 0.0998 5.4230
0.0006 25.0 200 0.0777 6.5076
0.0003 37.5 300 0.0723 4.1215
0.0002 50.0 400 0.0691 3.4707
0.0001 62.5 500 0.0669 3.2538
0.0001 75.0 600 0.0656 3.0369
0.0001 87.5 700 0.0646 3.2538
0.0001 100.0 800 0.0635 3.4707
0.0001 112.5 900 0.0628 3.4707
0.0001 125.0 1000 0.0624 3.4707
0.0001 137.5 1100 0.0619 3.4707
0.0001 150.0 1200 0.0614 2.8200
0.0001 162.5 1300 0.0613 3.2538
0.0 175.0 1400 0.0609 3.2538
0.0 187.5 1500 0.0607 3.2538
0.0 200.0 1600 0.0606 3.2538
0.0 212.5 1700 0.0604 3.2538
0.0 225.0 1800 0.0605 3.4707
0.0 237.5 1900 0.0603 3.2538
0.0 250.0 2000 0.0602 2.8200

Framework versions

  • Transformers 4.44.0
  • Pytorch 2.4.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1