pnr-svc's picture
End of training
ef57d00 verified
|
raw
history blame
4.54 kB
metadata
base_model: distilbert-base-uncased
library_name: peft
license: apache-2.0
metrics:
  - precision
  - recall
  - f1
  - accuracy
tags:
  - generated_from_trainer
model-index:
  - name: distilbert-ner-qlorafinetune-runs
    results: []

distilbert-ner-qlorafinetune-runs

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1707
  • Precision: 0.9584
  • Recall: 0.9495
  • F1: 0.9539
  • Accuracy: 0.9737

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0004
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 640
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
4.6043 0.0151 20 1.9157 0.0 0.0 0.0 0.6192
1.5758 0.0303 40 0.7695 0.7538 0.4952 0.5977 0.8411
0.391 0.0454 60 0.3487 0.8781 0.8772 0.8777 0.9548
0.2109 0.0605 80 0.2782 0.8970 0.9301 0.9133 0.9655
0.1793 0.0756 100 0.2435 0.9635 0.9318 0.9474 0.9664
0.1055 0.0908 120 0.2311 0.9614 0.9330 0.9470 0.9667
0.3157 0.1059 140 0.2210 0.9631 0.9333 0.9480 0.9677
0.1085 0.1210 160 0.2088 0.9336 0.9364 0.9350 0.9692
0.2085 0.1362 180 0.2044 0.9576 0.9351 0.9462 0.9695
0.3833 0.1513 200 0.1992 0.9478 0.9402 0.9440 0.9703
0.097 0.1664 220 0.1957 0.9482 0.9426 0.9454 0.9712
0.12 0.1815 240 0.1964 0.9541 0.9421 0.9481 0.9716
0.1696 0.1967 260 0.2697 0.9315 0.9444 0.9379 0.9718
0.1405 0.2118 280 0.1933 0.9691 0.9424 0.9555 0.9717
0.1992 0.2269 300 0.1887 0.9538 0.9444 0.9491 0.9722
0.0907 0.2421 320 0.1870 0.9629 0.9441 0.9534 0.9724
0.1778 0.2572 340 0.1852 0.9461 0.9471 0.9466 0.9730
0.1474 0.2723 360 0.1821 0.9467 0.9472 0.9469 0.9731
0.1972 0.2874 380 0.1798 0.9522 0.9472 0.9497 0.9731
0.1807 0.3026 400 0.1823 0.9646 0.9465 0.9555 0.9729
0.1388 0.3177 420 0.1771 0.9474 0.9491 0.9482 0.9733
0.1664 0.3328 440 0.1762 0.9655 0.9470 0.9562 0.9732
0.1559 0.3480 460 0.1747 0.9618 0.9482 0.9550 0.9733
0.233 0.3631 480 0.1750 0.9663 0.9484 0.9573 0.9733
0.1851 0.3782 500 0.1738 0.9616 0.9492 0.9554 0.9735
0.2512 0.3933 520 0.1725 0.9642 0.9491 0.9566 0.9736
0.0823 0.4085 540 0.1721 0.9624 0.9490 0.9556 0.9736
0.0865 0.4236 560 0.1717 0.9624 0.9491 0.9557 0.9737
0.0611 0.4387 580 0.1714 0.9607 0.9493 0.9550 0.9738
0.105 0.4539 600 0.1710 0.9612 0.9493 0.9552 0.9737
0.1192 0.4690 620 0.1709 0.9584 0.9495 0.9540 0.9737
0.1923 0.4841 640 0.1707 0.9584 0.9495 0.9539 0.9737

Framework versions

  • PEFT 0.12.0
  • Transformers 4.43.3
  • Pytorch 2.4.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1