pnr-svc's picture
update model card README.md
e487b8c
---
license: mit
tags:
- generated_from_trainer
datasets:
- ner-tr
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: distilbert-turkish-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: ner-tr
type: ner-tr
config: NERTR
split: train
args: NERTR
metrics:
- name: Precision
type: precision
value: 1.0
- name: Recall
type: recall
value: 1.0
- name: F1
type: f1
value: 1.0
- name: Accuracy
type: accuracy
value: 1.0
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# distilbert-turkish-ner
This model is a fine-tuned version of [dbmdz/distilbert-base-turkish-cased](https://huggingface.co/dbmdz/distilbert-base-turkish-cased) on the ner-tr dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0013
- Precision: 1.0
- Recall: 1.0
- F1: 1.0
- Accuracy: 1.0
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:---:|:--------:|
| 0.5744 | 1.0 | 529 | 0.0058 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0094 | 2.0 | 1058 | 0.0017 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0047 | 3.0 | 1587 | 0.0013 | 1.0 | 1.0 | 1.0 | 1.0 |
### Framework versions
- Transformers 4.22.1
- Pytorch 1.12.1+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1