pollner's picture
update model card README.md
5cb4316
|
raw
history blame
2.59 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - marsyas/gtzan
metrics:
  - accuracy
model-index:
  - name: distilhubert-finetuned-gtzan
    results: []

distilhubert-finetuned-gtzan

This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9006
  • Accuracy: 0.8

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.1981 1.0 57 2.1804 0.37
1.7932 2.0 114 1.7160 0.62
1.3257 3.0 171 1.2539 0.67
1.1239 4.0 228 1.1187 0.68
0.7457 5.0 285 0.9367 0.73
0.6922 6.0 342 0.7564 0.81
0.5718 7.0 399 0.8179 0.78
0.3729 8.0 456 0.7299 0.79
0.2667 9.0 513 0.6415 0.82
0.4672 10.0 570 0.8068 0.78
0.1392 11.0 627 0.7228 0.81
0.1069 12.0 684 0.7787 0.79
0.0659 13.0 741 0.7720 0.8
0.0291 14.0 798 0.7609 0.79
0.0263 15.0 855 0.8363 0.8
0.0177 16.0 912 0.8796 0.78
0.0166 17.0 969 0.8844 0.79
0.0139 18.0 1026 0.8909 0.8
0.0132 19.0 1083 0.9017 0.8
0.0131 20.0 1140 0.9006 0.8

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.13.0
  • Tokenizers 0.13.3