AdditiveLLM
Collection
32 items
•
Updated
This model is a fine-tuned version of distilbert/distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
More information needed
More information needed
More information needed
The following hyperparameters were used during training:
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.6293 | 1.0 | 1062 | 0.5118 | 0.7980 |
0.5347 | 2.0 | 2124 | 0.3975 | 0.8323 |
0.4369 | 3.0 | 3186 | 0.3575 | 0.8526 |
0.4335 | 4.0 | 4248 | 0.3329 | 0.8627 |
0.4325 | 5.0 | 5310 | 0.3173 | 0.8693 |
0.4259 | 6.0 | 6372 | 0.3058 | 0.8763 |
0.35 | 7.0 | 7434 | 0.2999 | 0.8784 |
0.4424 | 8.0 | 8496 | 0.2985 | 0.8779 |
0.3915 | 9.0 | 9558 | 0.2987 | 0.8755 |
0.4196 | 10.0 | 10620 | 0.2942 | 0.8783 |
0.3827 | 11.0 | 11682 | 0.2936 | 0.8783 |
0.32 | 12.0 | 12744 | 0.2895 | 0.8806 |
0.3664 | 13.0 | 13806 | 0.2971 | 0.8737 |
0.3623 | 14.0 | 14868 | 0.2935 | 0.8760 |
0.3542 | 15.0 | 15930 | 0.2943 | 0.8745 |
0.3391 | 16.0 | 16992 | 0.2881 | 0.8810 |
0.3404 | 17.0 | 18054 | 0.2888 | 0.8783 |
0.3747 | 18.0 | 19116 | 0.2893 | 0.8776 |
0.38 | 19.0 | 20178 | 0.2856 | 0.8807 |
0.3123 | 20.0 | 21240 | 0.2853 | 0.8811 |
Base model
distilbert/distilbert-base-uncased