AdditiveLLM
Collection
32 items
•
Updated
This model is a fine-tuned version of meta-llama/Llama-3.2-1B on an unknown dataset. It achieves the following results on the evaluation set:
More information needed
More information needed
More information needed
The following hyperparameters were used during training:
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.7994 | 1.0 | 1062 | 0.7879 | 0.8243 |
0.5403 | 2.0 | 2124 | 0.5089 | 0.8545 |
0.4235 | 3.0 | 3186 | 0.3855 | 0.8819 |
0.3556 | 4.0 | 4248 | 0.4072 | 0.8656 |
0.3133 | 5.0 | 5310 | 0.3077 | 0.8999 |
0.2998 | 6.0 | 6372 | 0.3031 | 0.9025 |
0.2842 | 7.0 | 7434 | 0.2610 | 0.9100 |
0.2773 | 8.0 | 8496 | 0.2443 | 0.9157 |
0.2413 | 9.0 | 9558 | 0.2339 | 0.9204 |
0.2394 | 10.0 | 10620 | 0.2241 | 0.9223 |
0.2305 | 11.0 | 11682 | 0.2230 | 0.9195 |
0.2119 | 12.0 | 12744 | 0.2129 | 0.9273 |
0.2106 | 13.0 | 13806 | 0.2186 | 0.9228 |
0.1973 | 14.0 | 14868 | 0.1961 | 0.9319 |
0.1993 | 15.0 | 15930 | 0.1903 | 0.9337 |
0.1863 | 16.0 | 16992 | 0.1888 | 0.9322 |
0.1883 | 17.0 | 18054 | 0.1966 | 0.9288 |
0.1879 | 18.0 | 19116 | 0.1794 | 0.9380 |
0.1856 | 19.0 | 20178 | 0.1786 | 0.9366 |
0.1808 | 20.0 | 21240 | 0.1838 | 0.9344 |
0.1711 | 21.0 | 22302 | 0.1749 | 0.9383 |
0.1689 | 22.0 | 23364 | 0.1694 | 0.9405 |
0.17 | 23.0 | 24426 | 0.1687 | 0.9411 |
0.1648 | 24.0 | 25488 | 0.1684 | 0.9403 |
0.1665 | 25.0 | 26550 | 0.1655 | 0.9421 |