Mistral 7B NL2BASH Agent
This model is a fine-tuned version of mistralai/Mistral-7B-Instruct-v0.2 on the nl2bash dataset. It achieves the following results on the evaluation set:
- Loss: 1.5952
Model description
Mistral 7B NL2BASH Agent is a fine-tuned model that converts natural language queries into Linux commands. It serves as an intelligent agent capable of generating Linux commands based on user input in the form of natural language queries.
Intended uses & limitations
- Automating the process of creating Linux commands from natural language queries.
- Assisting users in generating complex Linux commands quickly and accurately.
- The model's performance may vary based on the complexity and specificity of the natural language queries.
- It may not handle all edge cases or uncommon scenarios effectively.
Installation
pip install transformers accelerate torch bitsandbytes peft
Usage
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
import torch
from peft import PeftModel, PeftConfig
read_token="YOUR HUGGINGFACE TOKEN"
nf4_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True,
bnb_4bit_compute_dtype=torch.bfloat16
)
model = AutoModelForCausalLM.from_pretrained(
"mistralai/Mistral-7B-Instruct-v0.2",
device_map='auto',
quantization_config=nf4_config,
use_cache=False,
token=read_token
)
model = PeftModel.from_pretrained(model, "pranay-j/mistral-7b-nl2bash-agent",device_map='auto',token=read_token)
tokenizer=AutoTokenizer.from_pretrained("pranay-j/mistral-7b-nl2bash-agent",add_eos_token=False)
nl='Add "execute" to the permissions of all directories in the home directory tree'
prompt= f"[INST] {nl} [/INST]"
inputs=tokenizer(prompt,return_tensors="pt")
input_ids=inputs["input_ids"].to("cuda")
with torch.no_grad():
out=model.generate(input_ids,top_p=0.5, temperature=0.7, max_new_tokens=30)
tokenizer.decode(out[0][input_ids.shape[-1]:])
# Output: find ~ -type d -exec chmod +x {} </s>
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2.5e-05
- train_batch_size: 10
- eval_batch_size: 10
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 40
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 5
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.6136 | 1.0 | 202 | 1.6451 |
1.5448 | 2.0 | 404 | 1.5952 |
Framework versions
- PEFT 0.10.0
- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2
- Downloads last month
- 4
Model tree for pranay-j/mistral-7b-nl2bash-agent
Base model
mistralai/Mistral-7B-Instruct-v0.2