distilhubert-finetuned-gtzan

This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8444
  • Accuracy: 0.83

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
2.1376 1.0 113 1.9783 0.44
1.3879 2.0 226 1.2784 0.66
1.0967 3.0 339 1.0352 0.66
0.8639 4.0 452 0.8977 0.7
0.6308 5.0 565 0.7466 0.76
0.4585 6.0 678 0.7374 0.78
0.5213 7.0 791 0.6039 0.79
0.1958 8.0 904 0.7174 0.8
0.2075 9.0 1017 0.5657 0.85
0.1034 10.0 1130 0.6176 0.8
0.0308 11.0 1243 0.7378 0.85
0.103 12.0 1356 0.7759 0.82
0.0131 13.0 1469 0.8104 0.83
0.0103 14.0 1582 0.8175 0.83
0.0116 15.0 1695 0.8444 0.83

Framework versions

  • Transformers 4.33.0.dev0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.4
  • Tokenizers 0.13.3
Downloads last month
31
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for pranjalks/distilhubert-finetuned-gtzan

Finetuned
(404)
this model

Dataset used to train pranjalks/distilhubert-finetuned-gtzan

Evaluation results