leaderboard-pr-bot's picture
Adding Evaluation Results
c5c4f0c verified
|
raw
history blame
4.77 kB
---
license: apache-2.0
model-index:
- name: Sheared-LLaMA-2.7B-ShareGPT
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 41.04
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=princeton-nlp/Sheared-LLaMA-2.7B-ShareGPT
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 71.26
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=princeton-nlp/Sheared-LLaMA-2.7B-ShareGPT
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 28.5
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=princeton-nlp/Sheared-LLaMA-2.7B-ShareGPT
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 47.71
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=princeton-nlp/Sheared-LLaMA-2.7B-ShareGPT
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 64.17
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=princeton-nlp/Sheared-LLaMA-2.7B-ShareGPT
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 0.0
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=princeton-nlp/Sheared-LLaMA-2.7B-ShareGPT
name: Open LLM Leaderboard
---
**Paper**: [https://arxiv.org/pdf/2310.06694.pdf](https://arxiv.org/pdf/2310.06694.pdf)
**Code**: https://github.com/princeton-nlp/LLM-Shearing
**Models**: [Sheared-LLaMA-1.3B](https://huggingface.co/princeton-nlp/Sheared-LLaMA-1.3B), [Sheared-LLaMA-2.7B](https://huggingface.co/princeton-nlp/Sheared-LLaMA-2.7B)
## Training information
This is the instruction tuned version of [princeton-nlp/Sheared-LLaMA-2.7B](https://huggingface.co/princeton-nlp/Sheared-LLaMA-2.7B). We trained the base model on 10,000 instruction-response pairs
sampled from the ShareGPT dataset (first-turns only). We use the following prompt to perform instruction tuning.
> You are a helpful assistant. Write a response that appropriately completes the request.\n\n### Input:\n{input}\n\n### Response:
This model can be loaded through transformers.LlamaModelForCausalLM as follows:
```
from transformers import LlamaModelForCausalLM
model = LlamaModelForCausalLM.from_pretrained("princeton-nlp/Sheared-LLaMA-1.3B-ShareGPT")
```
## Bibtex
If you find our model useful, consider citing us with:
```
@article{xia2023sheared,
title={Sheared llama: Accelerating language model pre-training via structured pruning},
author={Xia, Mengzhou and Gao, Tianyu and Zeng, Zhiyuan and Chen, Danqi},
journal={arXiv preprint arXiv:2310.06694},
year={2023}
}
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_princeton-nlp__Sheared-LLaMA-2.7B-ShareGPT)
| Metric |Value|
|---------------------------------|----:|
|Avg. |42.11|
|AI2 Reasoning Challenge (25-Shot)|41.04|
|HellaSwag (10-Shot) |71.26|
|MMLU (5-Shot) |28.50|
|TruthfulQA (0-shot) |47.71|
|Winogrande (5-shot) |64.17|
|GSM8k (5-shot) | 0.00|