SentenceTransformer based on distilbert/distilbert-base-multilingual-cased
This is a sentence-transformers model finetuned from distilbert/distilbert-base-multilingual-cased. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: distilbert/distilbert-base-multilingual-cased
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: DistilBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("pritamdeka/distilbert-base-multilingual-cased-indicxnli-random-negatives-v1")
# Run inference
sentences = [
'মই ভালদৰে জানিব নোৱাৰোঁ আপোনালোকৰ সৈতে কথা বতৰা আৰু এক ভাল সন্ধ্যা আছিল',
'মই নিশ্চিত নহয় কিন্তু মই অলপ ভাল, আজি ৰাতি আপোনালোকৰ সৈতে কথা পাতিবলৈ পাই ভাল লাগিল।',
'Shannon এ বাৰ্তা উপেক্ষা কৰিছে।',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
pritamdeka/stsb-assamese-translated-dev
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.717 |
spearman_cosine | 0.7221 |
pearson_manhattan | 0.738 |
spearman_manhattan | 0.7452 |
pearson_euclidean | 0.7387 |
spearman_euclidean | 0.7459 |
pearson_dot | 0.6481 |
spearman_dot | 0.6478 |
pearson_max | 0.7387 |
spearman_max | 0.7459 |
Semantic Similarity
- Dataset:
pritamdeka/stsb-assamese-translated-test
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.6568 |
spearman_cosine | 0.6622 |
pearson_manhattan | 0.6675 |
spearman_manhattan | 0.6722 |
pearson_euclidean | 0.6682 |
spearman_euclidean | 0.6727 |
pearson_dot | 0.5692 |
spearman_dot | 0.5709 |
pearson_max | 0.6682 |
spearman_max | 0.6727 |
Training Details
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 64per_device_eval_batch_size
: 64num_train_epochs
: 1warmup_ratio
: 0.1fp16
: Trueload_best_model_at_end
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 64per_device_eval_batch_size
: 64per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | loss | pritamdeka/stsb-assamese-translated-dev_spearman_cosine | pritamdeka/stsb-assamese-translated-test_spearman_cosine |
---|---|---|---|---|---|
0 | 0 | - | - | 0.5489 | - |
0.0489 | 500 | 1.9387 | 1.7308 | 0.6808 | - |
0.0978 | 1000 | 1.0503 | 1.7373 | 0.6689 | - |
0.1467 | 1500 | 0.92 | 1.5838 | 0.6761 | - |
0.1956 | 2000 | 0.8754 | 1.4807 | 0.6518 | - |
0.2445 | 2500 | 0.7988 | 1.3797 | 0.6853 | - |
0.2933 | 3000 | 0.7606 | 1.3713 | 0.7108 | - |
0.3422 | 3500 | 0.7228 | 1.2510 | 0.6677 | - |
0.3911 | 4000 | 0.688 | 1.2374 | 0.6734 | - |
0.4400 | 4500 | 0.6992 | 1.2173 | 0.6891 | - |
0.4889 | 5000 | 0.6108 | 1.1638 | 0.7017 | - |
0.5378 | 5500 | 0.612 | 1.0815 | 0.7102 | - |
0.5867 | 6000 | 0.6259 | 1.0664 | 0.7202 | - |
0.6356 | 6500 | 0.5863 | 1.0464 | 0.7047 | - |
0.6845 | 7000 | 0.5941 | 1.0111 | 0.7101 | - |
0.7334 | 7500 | 0.5436 | 1.0023 | 0.7171 | - |
0.7822 | 8000 | 0.555 | 0.9633 | 0.7202 | - |
0.8311 | 8500 | 0.5466 | 0.9651 | 0.7279 | - |
0.8800 | 9000 | 0.5326 | 0.9611 | 0.7262 | - |
0.9289 | 9500 | 0.5055 | 0.9313 | 0.7276 | - |
0.9778 | 10000 | 0.4828 | 0.9172 | 0.7221 | - |
1.0 | 10227 | - | - | - | 0.6622 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.42.4
- PyTorch: 2.3.1+cu121
- Accelerate: 0.32.1
- Datasets: 2.20.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 12
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for pritamdeka/distilbert-base-multilingual-cased-indicxnli-random-negatives-v1
Evaluation results
- Pearson Cosine on pritamdeka/stsb assamese translated devself-reported0.717
- Spearman Cosine on pritamdeka/stsb assamese translated devself-reported0.722
- Pearson Manhattan on pritamdeka/stsb assamese translated devself-reported0.738
- Spearman Manhattan on pritamdeka/stsb assamese translated devself-reported0.745
- Pearson Euclidean on pritamdeka/stsb assamese translated devself-reported0.739
- Spearman Euclidean on pritamdeka/stsb assamese translated devself-reported0.746
- Pearson Dot on pritamdeka/stsb assamese translated devself-reported0.648
- Spearman Dot on pritamdeka/stsb assamese translated devself-reported0.648
- Pearson Max on pritamdeka/stsb assamese translated devself-reported0.739
- Spearman Max on pritamdeka/stsb assamese translated devself-reported0.746